Kendall L. Carder

Learn More
For open ocean and coastal waters, a multiband quasi-analytical algorithm is developed to retrieve absorption and backscattering coefficients, as well as absorption coefficients of phytoplankton pigments and gelbstoff. This algorithm is based on remote-sensing reflectance models derived from the radiative transfer equation, and values of total absorption(More)
In earlier studies of passive remote sensing of shallow-water bathymetry, bottom depths were usually derived by empirical regression. This approach provides rapid data processing, but it requires knowledge of a few true depths for the regression parameters to be determined, and it cannot reveal in-water constituents. In this study a newly developed(More)
For analytical or semianalytical retrieval of shallow-water bathymetry and/or optical properties of the water column from remote sensing, the contribution to the remotely sensed signal from the water column has to be separated from that of the bottom. The mathematical separation involves three diffuse attenuation coefficients: one for the downwelling(More)
Near real-time data from the MODIS satellite sensor was used to detect and trace a harmful algal bloom (HAB), or red tide, in SW Florida coastal waters from October to December 2004. MODIS fluorescence line height (FLH in W m 2 Am 1 sr ) data showed the highest correlation with near-concurrent in situ chlorophyll-a concentration (Chl in mg m ). For Chl(More)
[1] Euphotic zone depth, z1%, reflects the depth where photosynthetic available radiation (PAR) is 1% of its surface value. The value of z1% is a measure of water clarity, which is an important parameter regarding ecosystems. Based on the Case-1 water assumption, z1% can be estimated empirically from the remotely derived concentration of chlorophyll-a(More)
The Moderate Resolution Imaging Spectroradiometer (MODIS) will add a significant new capability for investigating the 70% of the earth’s surface that is covered by oceans, in addition to contributing to the continuation of a decadal scale time series necessary for climate change assessment in the oceans. Sensor capabilities of particular importance for(More)
The propagation of downwelling irradiance at wavelength from surface to a depth (z) in the ocean is governed by the diffuse attenuation coefficient, ) ( d K . There are two standard methods for the derivation of ) ( d K in remote sensing, which both are based on empirical relationships involving the blue-to-green ratio of ocean color. Recently, a(More)
The transport of colored dissolved organic matter (CDOM) between shallow banks and deep basins in the Bahamas was the focus of this study. Hydrographic and CDOM absorption measurements made on the Bahamas Banks and in Exuma Sound during the spring of 1999 and 2000 showed that values of salinity and CDOM absorption at 440 nm were higher on the banks (37.18(More)
Using an optimization technique, we derived subsurface properties of coastal and oceanic waters from measured remote-sensing reflectance spectra. These data included both optically deep and shallow environments. The measured reflectance covered a spectral range from 400 to 800 nm. The inversions used data from each 5-, 10-, and 20-nm contiguous bands,(More)
Remote-sensing reflectance is easier to interpret for the open ocean than for coastal regions because the optical signals are highly coupled to the phytoplankton (e.g., chlorophyll) concentrations. For estuarine or coastal waters, variable terrigenous colored dissolved organic matter (CDOM), suspended sediments, and bottom reflectance, all factors that do(More)