Learn More
Energy harvesting technologies, which generate electricity from environmental energy, have been attracting great interest because of their potential to power ubiquitously deployed sensor networks and mobile electronics. Of these technologies, thermoelectric (TE) conversion is a particularly promising candidate, because it can directly generate electricity(More)
The spin Seebeck effect refers to the generation of a spin voltage caused by a temperature gradient in a ferromagnet, which enables the thermal injection of spin currents from the ferromagnet into an attached nonmagnetic metal over a macroscopic scale of several millimeters. The inverse spin Hall effect converts the injected spin current into a transverse(More)
Surface plasmons, free-electron collective oscillations in metallic nanostructures, provide abundant routes to manipulate light-electron interactions that can localize light energy and alter electromagnetic field distributions at subwavelength scales. The research field of plasmonics thus integrates nano-photonics with electronics. In contrast, electronics(More)
Applying magnetic fields has been the method of choice to magnetize non-magnetic materials, but they are difficult to focus. The magneto-electric effect and voltage-induced magnetization generate magnetization by applied electric fields, but only in special compounds or heterostructures. Here we demonstrate that a simple metal such as gold can be magnetized(More)
Sharp structures in the magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt/Y_{3}Fe_{5}O_{12} at low temperatures are attributed to the magnon-phonon interaction. Experimental results are well reproduced by a Boltzmann theory that includes magnetoelastic coupling. The SSE anomalies coincide with magnetic fields tuned to the threshold of(More)
Asuka Miura,1 Takashi Kikkawa,2,3 Ryo Iguchi,2 Ken-ichi Uchida,2,4,5,6,* Eiji Saitoh,2,3,6,7 and Junichiro Shiomi1,8,* 1Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan 2Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan 3WPI Advanced Institute for Materials Research, Tohoku University, Sendai(More)
The Peltier effect modulates the temperature of a junction comprising two different conductors in response to charge currents across the junction, which is used in solid-state heat pumps and temperature controllers in electronics. Recently, in spintronics, a spin counterpart of the Peltier effect was observed. The 'spin Peltier effect' modulates the(More)
Spin fluctuation and transition have always been one of the central topics of magnetism and condensed matter science. Experimentally, the spin fluctuation is found transcribed onto scattering intensity in the neutron-scattering process, which is represented by dynamical magnetic susceptibility and maximized at phase transitions. Importantly, a neutron(More)