Ken-ichi Kato

Learn More
BACKGROUND Previous studies have demonstrated essential roles for alpha-calcium/calmodulin-dependent protein kinase II (alpha-CaMKII) in learning, memory and long-term potentiation (LTP). However, previous studies have also shown that alpha-CaMKII (+/-) heterozygous knockout mice display a dramatic decrease in anxiety-like and fearful behaviors, and an(More)
Ferroelectric liquid crystals are materials that have a remnant and electrically invertible polar order. Columnar liquid crystals with a ferroelectric nature have potential use in ultrahigh-density memory devices, if electrical polarization occurs along the columnar axis. However, columnar liquid crystals having an axial nonzero polarization at zero(More)
BACKGROUND Previous studies have demonstrated tissue-specific regulation of the rhythm of circadian transcription, suggesting that transcription factor complex CLOCK/BMAL1, essential for maintaining circadian rhythm, regulates transcription in a tissue-specific manner. To further elucidate the mechanism of the cell type-specific regulation of transcription(More)
αCaMKII plays central and essential roles in long-term potentiation (LTP), learning and memory. αCaMKII is activated via binding with Ca2+/CaM in response to elevated Ca2+ concentration. Furthermore, prolonged increase in Ca2+ concentration leads to the auto-phosphorylation of αCaMKII at T286, maintaining the activation of αCaMKII even after Ca2+/CaM(More)
Understanding the relationship between the superconducting, the neighboring insulating, and the normal metallic state above T c is a major challenge for all unconventional superconductors. The molecular A3C60 fulleride superconductors have a parent antiferromagnetic insulator in common with the atom-based cuprates, but here, the C60 (3-) electronic(More)
A high-precision diffractometer has been developed for the structure analysis of a submicrometre-scale single grain of a powder sample at the SPring-8 BL40XU undulator beamline. The key design concept is the combination of a stable focused synchrotron radiation beam and the precise axis control of the diffractometer, which allows accurate diffraction(More)
We report that a ferroelectric-like metallic state with reduced anisotropy of polarization is created by the doping of conduction electrons into BaTiO3, on the bases of x-ray/electron diffraction and infrared spectroscopic experiments. The crystal structure is heterogeneous in nanometer-scale, as enabled by the reduced polarization anisotropy. The enhanced(More)
The ability to design and control properties of nano-sized space in porous coordination polymers (PCPs) would provide us with an ideal stage for fascinating physical and chemical phenomena. We found an interconversion of nuclear-spin isomers for hydrogen molecule H2 adsorbed in a Hofmann-type PCP, {Fe(pz)[Pd(CN)4]} (pz=pyrazine), by the temperature(More)
Cross-control of a material property - manipulation of a physical quantity (e.g., magnetisation) by a nonconjugate field (e.g., electrical field) - is a challenge in fundamental science and also important for technological device applications. It has been demonstrated that magnetic properties can be controlled by electrical and optical stimuli in various(More)
The layered P2-Nax MO2 (M: transition metal) system has been widely recognized as electronic or mixed conductor. Here, we demonstrate that Co vacancies in P2-Nax CoO2 created by hydrogen reductive elimination lead to an ionic conductivity of 0.045 S cm(-1) at 25 °C. Using in situ synchrotron X-ray powder diffraction and Raman spectroscopy, the composition(More)