Learn More
The Consortium for Snake Genomics is in the process of sequencing the genome and creating transcriptomic resources for the Burmese python. Here, we describe how this will be done, what analyses this work will include, and provide a timeline.
There often exists a "one-to-many" relationship between a transcription factor and a multitude of binding sites throughout the genome. It is commonly assumed that transcription factor binding motifs remain largely static over the course of evolution because changes in binding specificity can alter the interactions with potentially hundreds of sites across(More)
Transcriptional regulation is mediated by the collective binding of proteins called transcription factors to cis-regulatory elements. A handful of factors are known to function at particular distances from the transcription start site, although the extent to which this occurs is not well understood. Spatial dependencies can also exist between pairs of(More)
V(o)V(1)-ATPase is responsible for acidification of eukaryotic intracellular compartments and ATP synthesis of Archaea and some eubacteria. From the similarity to F(o)F(1)-ATP synthase, V(o)V(1)-ATPase has been assumed to be a rotary motor, but to date there are no experimental data to support this. Here we visualized the rotation of single molecules of(More)
Vacuole-type ATPases (V(o)V₁) and F(o)F₁ ATP synthases couple ATP hydrolysis/synthesis in the soluble V(1) or F₁ portion with proton (or Na(+)) flow in the membrane-embedded V(o) or F(o) portion through rotation of one common shaft. Here we show at submillisecond resolutions the ATP-driven rotation of isolated V₁ and the whole V(o)V₁ from Thermus(More)
The V0V1-ATPase of Thermus thermophilus catalyzes ATP synthesis coupled with proton translocation. It consists of an ATPase-active V1 part (ABDF) and a proton channel V0 part (CLEGI), but the arrangement of each subunit is still largely unknown. Here we found that acid treatment of V0V1-ATPase induced its dissociation into two subcomplexes, one with subunit(More)
The V1- and F1- rotary ATPases contain a rotor that rotates against a catalytic A3B3 or α3β3 stator. The rotor F(1-γ) or V1-DF is composed of both anti-parallel coiled coil and globular-loop parts. The bacterial flagellar type III export apparatus contains a V1/F1-like ATPase ring structure composed of FliI6 homo-hexamer and FliJ which adopts an(More)
Changes in cis-regulatory element composition that result in novel patterns of gene expression are thought to be a major contributor to the evolution of lineage-specific traits. Although transcription factor binding events show substantial variation across species, most computational approaches to study regulatory elements focus primarily upon highly(More)
V0V1-ATPase is a proton-translocating ATPase responsible for acidification of eukaryotic intracellular compartments and for ATP synthesis in archaea and some eubacteria. We demonstrated recently the rotation of the central stalk subunits in V1, a catalytic sector of V0V1-ATPase (Imamura, H., Nakano, M., Noji, H., Muneyuki, E., Ohkuma, S., Yoshida, M., and(More)
The crystal structure of subunit F of vacuole-type ATPase/synthase (prokaryotic V-ATPase) was determined to of 2.2 A resolution. The subunit reveals unexpected structural similarity to the response regulator proteins that include the Escherichia coli chemotaxis response regulator CheY. The structure was successfully placed into the low-resolution EM(More)