Learn More
Al-induced cell rigidity is one of the symptoms of Al toxicity, but the mechanism by which plants tolerate this toxicity is still unclear. In this study, we found that overexpression of OsPIN2, an auxin transporter gene, could alleviate Al-induced cell rigidity in rice root apices. A freeze-thawing experiment showed that the Al-treated roots of wild-type(More)
Arabidopsis roots are routinely exposed to light both during their cultivation within transparent Petri dishes and during their confocal microscopy analysis. Here we report that illumination of roots which naturally grow in darkness, even for a few seconds, induces an immediate and strong burst of reactive oxygen species (ROS). Plant scientists studying(More)
In nature, root systems of most terrestrial plants are underground in darkness. Nevertheless, several photoreceptors have been found in roots and light-responsive mechanisms allowing roots to escape from strong light conditions have been discovered. In transparent Petri dishes, regular light exposure affects root morphology and behavior. We advocate the use(More)
Light can penetrate several centimeters below the soil surface. Growth, development and behavior of plant roots are markedly affected by light despite their underground lifestyle. Early studies provided contrasting information on the spatial and temporal distribution of light-sensing cells in the apical region of root apex and discussed the physiological(More)
Despite growing underground, largely in darkness, roots emerge to be very sensitive to light. Recently, several important papers have been published which reveal that plant roots not only express all known light receptors but also that their growth, physiology and adaptive stress responses are light-sensitive. In Arabidopsis, illumination of roots speeds-up(More)
A previous work suggested that peptides from the histidine-containing copper-binding motifs in human prion protein (PrP) function as peroxidase-like biocatalysts catalyzing the generation of superoxide anion radicals in the presence of neurotransmitters (aromatic monoamines) and phenolics such as tyrosine and tyrosyl residues on proteins. In this study,(More)
Arabidopsis thaliana is a widely used model plant for plant biology research. Under traditional agar-plate culture system (TPG, traditional plant-growing), both plant shoots and roots are exposed to illumination, and roots are grown in sucrose-added medium. This is not a natural environment for the roots and may cause artifact responses. We have developed(More)
Ozone-inducible (OI) peptides found in plants contain repeated sequences consisting of a hexa-repeat unit (YGH GGG) repeated 7-9 times in tandem, and each unit tightly binds copper. To date, the biochemical roles for OI peptides are not fully understood. Here, we demonstrated that the hexa-repeat unit from OI peptides behaves as metal-binding motif(More)
Impact of copper on the oxidative and calcium signal transductions leading to cell death in plant cells and the effects of the copper-binding peptide derived from the human prion protein (PrP) as a novel plant-protecting agent were assessed using a cell suspension culture of transgenic tobacco (Nicotiana tabacum L., cell line BY-2) expressing the aequorin(More)