Learn More
The warming of the Alaskan Arctic during the past 150 years has accelerated over the last three decades and is expected to increase vegetation productivity in tundra if shrubs become more abundant; indeed, this transition may already be under way according to local plot studies and remote sensing. Here we present evidence for a widespread increase in shrub(More)
A major challenge in predicting Earth's future climate state is to understand feedbacks that alter greenhouse-gas forcing. Here we synthesize field data from arctic Alaska, showing that terrestrial changes in summer albedo contribute substantially to recent high-latitude warming trends. Pronounced terrestrial summer warming in arctic Alaska correlates with(More)
The expansion of shrubs into tundra areas is a key terrestrial change underway in the Arctic in response to elevated temperatures during the twentieth century. Repeat photography permits a glimpse into greening satellite pixels, and it shows that, since 1950, some shrub patches have increased rapidly (hereafter expanding), while others have increased little(More)
—In March 2003, a field validation campaign was conducted on the sea ice near Barrow, AK. The goal of this campaign was to produce an extensive dataset of sea ice thickness and snow properties (depth and stratigraphy) against which remote sensing products collected by aircraft and satellite could be compared. (n = 9881 for three areas) with the thinnest(More)
Twentieth century warming has increased vegetation productivity and shrub cover across northern tundra and treeline regions, but effects on terrestrial wildlife have not been demonstrated on a comparable scale. During this period, Alaskan moose (Alces alces gigas) extended their range from the boreal forest into tundra riparian shrub habitat; similar(More)
  • 1