Ken Suzuki

Yukiko Shinozaki7
Motoo Koitabashi6
7Yukiko Shinozaki
6Motoo Koitabashi
4Shigenobu Yoshida
Learn More
Administration of bone marrow-derived mesenchymal stem cells (MSCs) is an innovative approach for the treatment of a range of diseases that are not curable by current therapies including heart failure. A number of clinical trials have been completed and many others are ongoing; more than 2,000 patients worldwide have been administered with culture-expanded(More)
  • Satsuki Fukushima, Steven R. Coppen, Joon Lee, Kenichi Yamahara, Leanne E. Felkin, Cesare M. N. Terracciano +3 others
  • 2008
BACKGROUND Intramyocardial injection of skeletal myoblasts (SMB) has been shown to be a promising strategy for treating post-infarction chronic heart failure. However, insufficient therapeutic benefit and occurrence of ventricular arrhythmias are concerns. We hypothesised that the use of a retrograde intracoronary route for SMB-delivery might favourably(More)
  • Enrique Lara-Pezzi, Nadine Winn, Angelika Paul, Karl McCullagh, Esfir Slominsky, Maria Paola Santini +5 others
  • 2007
The calcium-activated phosphatase calcineurin (Cn) transduces physiological signals through intracellular pathways to influence the expression of specific genes. Here, we characterize a naturally occurring splicing variant of the CnAbeta catalytic subunit (CnAbeta1) in which the autoinhibitory domain that controls enzyme activation is replaced with a unique(More)
  • Yasunori Shintani, Hannes CA Drexler, Hidetaka Kioka, Cesare MN Terracciano, Steven R Coppen, Hiromi Imamura +8 others
  • 2014
Toll-like receptor 9 (TLR9) has a key role in the recognition of pathogen DNA in the context of infection and cellular DNA that is released from damaged cells. Pro-inflammatory TLR9 signalling pathways in immune cells have been well investigated, but we have recently discovered an alternative pathway in which TLR9 temporarily reduces energy substrates to(More)
Pseudozyma antarctica JCM 10317 exhibits a strong degradation activity for biodegradable plastics (BPs) such as agricultural mulch films composed of poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA). An enzyme named PaE was isolated and the gene encoding PaE was cloned from the strain by functional complementation in(More)
Cell transplantation of skeletal myoblasts (SMs) is one possible treatment for repairing cardiac tissue after myocardial injury. However, inappropriate electrical coupling between grafted SMs and host cardiomyocytes may be responsible for the arrhythmias observed in clinical trials of SM transplantation. Whether functional gap junctions occur between the(More)
Transplantation of unfractionated bone marrow mononuclear cells (BMCs) repairs and/or regenerates the damaged myocardium allegedly due to secretion from surviving BMCs (paracrine effect). However, donor cell survival after transplantation is known to be markedly poor. This discrepancy led us to hypothesize that dead donor BMCs might also contribute to the(More)
  • Motoo Koitabashi, Masako T Noguchi, Yuka Sameshima-Yamashita, Syuntaro Hiradate, Ken Suzuki, Shigenobu Yoshida +4 others
  • 2012
To improve the biodegradation of biodegradable plastic (BP) mulch films, 1227 fungal strains were isolated from plant surface (phylloplane) and evaluated for BP-degrading ability. Among them, B47-9 a strain isolated from the leaf surface of barley showed the strongest ability to degrade poly-(butylene succinate-co-butylene adipate) (PBSA) and poly-(butylene(More)
Two yeast strains, which have the ability to degrade biodegradable plastic films, were isolated from the larval midgut of a stag beetle, Aegus laevicollis. Both of them are most closely related to Cryptococcus magnus and could degrade biodegradable plastic (BP) films made of poly(butylene succinate) (PBS) and poly(butylene succinate-co-adipate) (PBSA)(More)
A surface marker that distinctly identifies cardiac progenitors (CPs) is essential for the robust isolation of these cells, circumventing the necessity of genetic modification. Here, we demonstrate that a Glycosylphosphatidylinositol-anchor containing neurotrophic factor receptor, Glial cell line-derived neurotrophic factor receptor alpha 2 (Gfra2),(More)