Learn More
Dielectrophoresis is used to align carbon nanotubes (CNTs) within gelatin methacrylate (GelMA) hydrogels in a facile and rapid manner. Aligned GelMA-CNT hydrogels show higher electrical properties compared with pristine and randomly distributed CNTs in GelMA hydrogels. The muscle cells cultured on these materials demonstrate higher maturation compared with(More)
The invention of atomic force microscopy (AFM) enabled us to study the statistical properties of single polymer chains by a method called "nanofishing," which stretches a single polymer chain adsorbed on a substrate with its one end by picking it at the other end. A force-extension curve obtained for a single polystyrene chain in a Theta solvent(More)
Controlling the cellular microenvironment can be used to direct the cellular organization, thereby improving the function of synthetic tissues in biosensing, biorobotics, and regenerative medicine. In this study, we were inspired by the microstructure and biological properties of the extracellular matrix to develop freestanding ultrathin polymeric films(More)
Engineered surface-bound molecular gradients are of great importance for a range of biological applications. In this paper, we fabricated a polydopamine gradient on a hydrophobic surface. A microfluidic device was used to generate a covalently conjugated gradient of polydopamine (PDA), which changed the wettabilty and the surface energy of the substrate.(More)
Engineering functional muscle tissue requires the formation of densely packed, aligned, and mature myotubes. To enhance the formation of aligned myotubes with improved contractibility, we fabricated aligned electrospun gelatin multi-walled carbon nanotubes (MWNTs) hybrid fibers that were used as scaffolds for the growth of myoblasts (C2C12). The MWNTs(More)
To evaluate long-term results of stent placement retrospectively in patients with outflow block after living-donor-liver transplantation (LDLT). For this institutional review board approved retrospective study conducted during 2002–2012, stents were placed in outflow veins in 15 patients (11.3 %, 15/133) (12 men; 3 female) in whom outflow block developed(More)
Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner.(More)
Although the formation of dynamic heterogeneities in glass-forming materials is believed to play an essential role in determining their properties as the glass transition is approached, direct imaging of these heterogeneities remains a challenge. Here, we report on a direct observation of nanoscale dynamic heterogeneities and their time evolution over(More)