Learn More
A quasi-passive leg exoskeleton is presented for load-carrying augmentation during walking. The exoskeleton has no actuators, only ankle and hip springs and a knee variable-damper. Without a payload, the exoskeleton weighs 11.7 kg and requires only 2 Watts of electrical power during loaded walking. For a 36 kg payload, we demonstrate that the quasi-passive(More)
in Osaka. RoboCup is a research-oriented initiative that pioneered the field of multirobot research of robot teams starting in 1996. In those days, most of the robotics research was focused on single-robot issues. RoboCup opened a new horizon for multirobot research: Teams of robots need to face other teams of robots to accomplish specific goals. This(More)
In this paper, we seek to understand how leg muscles and tendons work mechanically during walking in order to motivate the design of efficient robotic legs. We hypothesize that a robotic leg comprising only knee and ankle passive and quasi-passive elements, including springs, clutches and variable-damping components, can capture the dominant mechanical(More)
Control schemes for powered ankle-foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control(More)
— In this paper, we present a method for co-evolving structures and controller of biped walking robots. Currently, biped walking humanoid robots are designed manually on trial-and-error basis. Although certain control theory exists, such as zero moment point (ZMP) compensation, these theories assume humanoid robot morphology is given in advance. Thus,(More)
— A new type of master-slave control methodology, which has the merits of both unilateral and bilateral ones, is proposed. The methodology is built on switching the unilateral feedback controls of position and force as required using switching and elastic elements. Proposed methodology not only eliminates the demerits of bilateral control, but also supplies(More)
In this paper, we present a method for co-evolving morphology and controller of bi-ped humanoid robots. Currently, bi-ped walking humanoid robots are designed manually on trial-and-error basis. Thus, engineers have to design control program for apriori designed morphology, neither of them shown to be optimal within a large design space. We propose(More)