Kelu Kevin Zhou

Learn More
Although Wnt signaling is known to mediate multiple biological and pathological processes, its association with diabetic retinopathy (DR) has not been established. Here we show that retinal levels and nuclear translocation of beta-catenin, a key effector in the canonical Wnt pathway, were increased in humans with DR and in three DR models. Retinal levels of(More)
The Wnt pathway regulates multiple biological and pathological processes including angiogenesis and inflammation. Here we identified a unique inhibitor of the Wnt pathway, SERPINA3K, a serine proteinase inhibitor with anti-inflammatory and angiogenic activities. SERPINA3K blocked the Wnt pathway activation induced by a Wnt ligand and by diabetes.(More)
PURPOSE The authors' previous studies showed that the Wnt signaling pathway is activated in the retinas and retinal pigment epithelia of animal models of age-related macular degeneration (AMD) and diabetic retinopathy (DR). The purpose of this study was to investigate the role of the canonical Wnt pathway in pathogenesis of these diseases. METHODS The Wnt(More)
Our recent studies suggest that activation of the wingless-type MMTV integration site (WNT) pathway plays pathogenic roles in diabetic retinopathy and age-related macular degeneration. Here we investigated the causative role of oxidative stress in retinal WNT pathway activation in an experimental model of diabetes. Cultured retinal pigment epithelial cells(More)
Our previous studies have shown that very low-density lipoprotein receptor (VLDLR) is a negative regulator of the Wnt pathway. The present study showed that VLDLR gene knockout (Vldlr(-/-)) mice displayed impaired cone ERG responses at early ages. Immunostaining of mid-wavelength cones showed significantly decreased cone densities in the retina and(More)
Pigment epithelium-derived factor (PEDF) is a serine proteinase inhibitor with antiangiogenic activities. To investigate whether PEDF overexpression has an impact on ocular neovascularization in vivo, we generated PEDF transgenic (PEDF-Tg) mice that ubiquitously express human PEDF driven by the β-actin promoter. The PEDF-Tg mice under normal conditions did(More)
OBJECTIVE Connective tissue growth factor (CTGF) is a major fibrogenic factor. Increased retinal CTGF levels have been implicated to play a role in diabetic retinopathy. SERPINA3K is a serine proteinase inhibitor, and its levels were decreased in retinas with diabetic retinopathy. The purpose of this study was to investigate the role of SERPINA3K in the(More)
Retinal Müller cells are known to produce inflammatory and angiogenic cytokines, which play important roles in diabetic retinopathy. Hypoxia-inducible factor (HIF)-1 has been shown to play a crucial role in retinal inflammation and neovascularisation. We sought to determine the role of Müller cell-derived HIF-1 in oxygen-induced retinopathy (OIR) and(More)
PURPOSE Hypoxia-inducible factor (HIF)-1 is a key oxygen sensor and is believed to play an important role in neovascularization (NV). The purpose of this study is to determine the role of retinal pigment epithelium (RPE)-derived HIF-1α on ocular NV. METHODS Conditional HIF-1α knockout (KO) mice were generated by crossing transgenic mice expressing Cre in(More)
Kallistatin is a member of the serine proteinase inhibitor superfamily. Kallistatin levels have been shown to be decreased in the vitreous while increased in the circulation of patients with diabetic retinopathy (DR). Overactivation of the Wnt pathway is known to play pathogenic roles in DR. To investigate the role of kallistatin in DR and in Wnt pathway(More)