Kelly Virkler

Learn More
Body fluid traces recovered at crime scenes are among the most important types of evidence to forensic investigators. They contain valuable DNA evidence which can identify a suspect or victim as well as exonerate an innocent individual. The first step of identifying a particular body fluid is highly important since the nature of the fluid is itself very(More)
Raman spectroscopy was used to compare body fluids commonly found at crime scenes in a nondestructive manner. The dry traces of semen, vaginal fluid, sweat, saliva, and blood were analyzed using confocal Raman microscopy with a 785-nm excitation. The results show that the five fluids can be differentiated from one another by visual comparison of their Raman(More)
Forensic analysis has become one of the most growing areas of analytical chemistry in recent years. The ability to determine the species of origin of a body fluid sample is a very important and crucial part of a forensic investigation. We introduce here a new technique which utilizes a modern analytical method based on the combination of Raman spectroscopy(More)
Near-infrared (NIR) Raman spectroscopy was used to measure spectra of dried human blood samples from multiple donors. Two major questions addressed in this paper involve the influence of sample heterogeneity and potential Raman spectral variations that could arise between different donors of blood. Advanced statistical analysis of spectra obtained from(More)
Detection and identification of blood, semen and saliva stains, the most common body fluids encountered at a crime scene, are very important aspects of forensic science today. This study targets the development of a nondestructive, confirmatory method for body fluid identification based on Raman spectroscopy coupled with advanced statistical analysis. Dry(More)
The potential use of Raman spectroscopy for nondestructive, confirmatory identification of body fluids at the crime scene has been reported recently (Virkler and Lednev, Forensic Sci.,Int., 2008, 181, e1-e5). However, those experiments were performed using only one sample of each body fluid and did not investigate the potential for spectral variations among(More)
  • 1