Learn More
Previous models combining the human cardiovascular and pulmonary systems have not addressed their strong dynamic interaction. They are primarily cardiovascular or pulmonary in their orientation and do not permit a full exploration of how the combined cardiopulmonary system responds to large amplitude forcing (e.g., by the Valsalva maneuver). To address this(More)
The goal of this work is to study the cerebral autoregulation, brain gas exchange, and their interaction by means of a mathematical model. We have previously developed a model of the human cardiopulmonary (CP) system, which included the whole body circulatory system, lung and peripheral tissue gas exchange, and the central nervous system control of arterial(More)
Retinal and intra-retinal layer thicknesses are routinely generated from optical coherence tomography (OCT) images, but on-board software capabilities and image scaling assumptions are not consistent across devices. This study evaluates the device-independent Iowa Reference Algorithms (Iowa Institute for Biomedical Imaging) for automated intra-retinal layer(More)
We have developed a mathematical model of the human cardiopulmonary system that is able to simulate the normal functions of the cardiovascular and pulmonary systems, as well as their coupled interactions. Included in the model are descriptions of atrial and ventricular mechanics, the hemodynamics of the systemic and pulmonic circulations, baroreflex control(More)
  • 1