Kelly Jo Hamman

Learn More
Phenylalanine homeostasis in mammals is primarily controlled by liver phenylalanine hydroxylase (PAH) activity. Inherited PAH deficiency (phenylketonuria or PKU) leads to hyperphenylalaninemia in both mice and humans. A low level of residual liver PAH activity ensures near-normal dietary protein tolerance with normal serum phenylalanine level, but the(More)
Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS) is an autosomal-dominant cancer-predisposition syndrome with a significant risk of gastric, but not colorectal, adenocarcinoma. We mapped the gene to 5q22 and found loss of the wild-type allele on 5q in fundic gland polyps from affected individuals. Whole-exome and -genome sequencing(More)
Novel recombinant adeno-associated virus vectors pseudotyped with serotype 8 capsid (rAAV2/8) have recently shown exciting promise as effective liver-directed gene transfer reagents. We have produced a novel liver-specific rAAV2/8 vector expressing the mouse phenylalanine hydroxylase (Pah) cDNA and have administered this vector to hyperphenylalaninemic(More)
Successful restoration of phenylalanine (Phe) clearance following liver-directed gene therapy in murine phenylketonuria (PKU) is likely dependent upon both the number of cells successfully transduced and the amount of phenylalanine hydroxylase (PAH) activity expressed per cell. At low levels of transduction, Phe clearance could be limited by the low(More)
  • 1