Learn More
We present here LOCATE, a curated, web-accessible database that houses data describing the membrane organization and subcellular localization of proteins from the FANTOM3 Isoform Protein Sequence set. Membrane organization is predicted by the high-throughput, computational pipeline MemO. The subcellular locations of selected proteins from this set were(More)
BACKGROUND The genomic revolution has led to rapid growth in sequencing of genes and proteins, and attention is now turning to the function of the encoded proteins. In this respect, microscope imaging of a protein's sub-cellular localisation is proving invaluable, and recent advances in automated fluorescent microscopy allow protein localisations to be(More)
LOCATE is a curated, web-accessible database that houses data describing the membrane organization and subcellular localization of mouse and human proteins. Over the past 2 years, the data in LOCATE have grown substantially. The database now contains high-quality localization data for 20% of the mouse proteome and general localization annotation for nearly(More)
Membrane organization describes the orientation of a protein with respect to the membrane and can be determined by the presence, or absence, and organization within the protein sequence of two features: endoplasmic reticulum signal peptides and alpha-helical transmembrane domains. These features allow protein sequences to be classified into one of five(More)
Application of a computational membrane organization prediction pipeline, MemO, identified putative type II membrane proteins as proteins predicted to encode a single alpha-helical transmembrane domain (TMD) and no signal peptides. MemO was applied to RIKEN's mouse isoform protein set to identify 1436 non-overlapping genomic regions or transcriptional units(More)
BACKGROUND Bituminaria bituminosa is a perennial legume species from the Canary Islands and Mediterranean region that has potential as a drought-tolerant pasture species and as a source of pharmaceutical compounds. Three botanical varieties have previously been identified in this species: albomarginata, bituminosa and crassiuscula. B. bituminosa can be(More)
The genomic sequencing revolution has led to rapid growth in sequencing of genes and proteins, and attention is now turning to the function of the encoded proteins. In this respect, microscope imaging of a protein's subcellular location is proving invaluable. High-throughput methods mean that it is now possible to capture images of hundreds of protein(More)
  • 1