Kelly A Chamberlain

  • Citations Per Year
Learn More
Several studies found that FE65, a cytoplasmic adaptor protein, interacts with APP and LRP1, altering the trafficking and processing of APP. We have previously shown that FE65 interacts with the ApoE receptor, ApoER2, altering its trafficking and processing. Interestingly, it has been shown that FE65 can act as a linker between APP and LRP1 or ApoER2. In(More)
Oligodendrocytes readily regenerate and replace myelin membranes around axons in the adult mammalian central nervous system (CNS) following injury. The ability to regenerate oligodendrocytes depends on the availability of neural progenitors called oligodendrocyte precursor cells (OPCs) in the adult CNS that respond to injury-associated signals to induce OPC(More)
Central processing of complex auditory tasks requires elaborate circuitry. The auditory midbrain, or inferior colliculus (IC), epitomizes such precise organization, where converging inputs form discrete, tonotopically-arranged axonal layers. Previously in rat, we established that shaping of multiple afferent patterns in the IC central nucleus (CNIC) occurs(More)
SEE PLUCHINO AND PERUZZOTTI-JAMETTI DOI101093/AWW266 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Myelin regeneration (remyelination) is a spontaneous process that occurs following central nervous system demyelination. However, for reasons that remain poorly understood, remyelination fails in the progressive phase of multiple sclerosis. Emerging evidence(More)
Chronic oligodendrocyte loss, which occurs in the demyelinating disorder multiple sclerosis (MS), contributes to axonal dysfunction and neurodegeneration. Current therapies are able to reduce MS severity, but do not prevent transition into the progressive phase of the disease, which is characterized by chronic neurodegeneration. Therefore, pharmacological(More)
  • 1