Learn More
Connections between the structures of Group 12 dihalides in their vapor and crystal phases are sought and discussed. The molecular structures of all monomers and dimers (MX(2): M=Zn, Cd, Hg and X=F, Cl, Br, I) were calculated at the density functional B3PW91 and MP2 computational levels. All the monomers are linear, with the mercury dihalide molecules(More)
Halogen bonding (R-X···Y) is a qualitative analogue of hydrogen bonding that may prove useful in the rational design of artificial proteins and nucleotides. We explore halogen-bonded DNA base pairs containing modified guanine, cytosine, adenine and thymine nucleosides. The structures and stabilities of the halogenated systems are compared to the normal(More)
The link between structural preferences in the monomers, dimers, and extended solid-state structures of the group 2 dihalides (MX(2): M = Be, Mg, Ca, Sr, Ba and X = F, Cl, Br, I) is examined theoretically. The question posed is how well are geometric properties of the gas-phase MX(2) monomers and lower order oligomers "remembered" in the corresponding MX(2)(More)
The existence and persistence of five-fold (quintuple) bonding in isomers of model RMMR molecules of quite different geometry are examined theoretically. The molecules studied are RMMR, with R = H, F, Cl, Br, CN, and CH3; M = Cr, Mo, and W. The potential energy surface of these molecules is quite complex, containing two, three, even four local minima. The(More)
We find for distinct classes of halogen bonded complexes (MF3-X···Y) that the ab initio BSSE-corrected binding energies (ΔE) and enthalpies (ΔH) are predicted by functions of the form y = A/r(n) + C. Here X is a halogen atom, Y is a base, r is the X···Y separation, and A, n, and C are constants. The actual value of n (5.5 < n < 7.0 for ΔE) for each class is(More)
The nature of the bonding and a definite preference for an eclipsed geometry in several substituted but-2-ynes, including certain novel derivatives are uncovered and examined. In particular, we consider the molecular species R3C-C≡C-CR3 (where R= H, F, Cl, Br, I, and CN), their R3C-B≡N-CR3 analogues, and a few novel exo-bridge systems with intramolecular(More)
How short can a C-C single bond get? The bonding in a set of molecules that are related structurally to previously synthesized or theoretically examined systems with short C-C bonds is investigated. According to calculations, a single C-C bond could be compressed to 1.313 Å! To the best of our knowledge, this is the shortest single C-C bond reported to(More)
Several of the lowest energy structures of small and medium sized boron clusters are two-dimensional systems made up of a pair of concentric rings. In some cases, the barriers to the rotation of one of those rings relative to the other are remarkably low. We find that a combination of electronic and geometrical factors, including apparently the relative(More)
A civic science curriculum is advocated. We discuss practical mechanisms for (and highlight the possible benefits of) addressing the relationship between scientific knowledge and civic responsibility coextensively with rigorous scientific content. As a strategy, we suggest an in-course treatment of well known (and relevant) historical and contemporary(More)
The electronic interaction between confined pairs of He atoms in the C(20)H(20) dodecahedrane cage is analyzed. The He-He distance is only 1.265 A, a separation that is less than half the He-He distance in the free He dimer. The energy difference between the possible isomers is negligible (less than 0.15 kcal mol(-1)), illustrating that there is a nearly(More)