Kelli L. Kuhen

Learn More
Human Immunodeficiency Viruses (HIV-1 and HIV-2) rely upon host-encoded proteins to facilitate their replication. Here, we combined genome-wide siRNA analyses with interrogation of human interactome databases to assemble a host-pathogen biochemical network containing 213 confirmed host cellular factors and 11 HIV-1-encoded proteins. Protein complexes that(More)
The growing resistance to current first-line antimalarial drugs represents a major health challenge. To facilitate the discovery of new antimalarials, we have implemented an efficient and robust high-throughput cell-based screen (1,536-well format) based on proliferation of Plasmodium falciparum (Pf) in erythrocytes. From a screen of approximately 1.7(More)
Plasmodium vivax causes 25-40% of malaria cases worldwide, yet research on this human malaria parasite has been neglected. Nevertheless, the recent publication of the P. vivax reference genome now allows genomics and systems biology approaches to be applied to this pathogen. We show here that whole-genome analysis of the parasite can be achieved directly(More)
Dendritic cells (DCs) genetically modified to continually express and present antigens may be potent physiologic adjuvants for induction of prophylactic or therapeutic immunity. We have previously shown that an env and nef deleted HIV-1 vector (HIV-1 delta EN) pseudotyped with VSV-G transduced monocyte-derived macrophages as well as CD34(+) precursors of(More)
Most malaria drug development focuses on parasite stages detected in red blood cells, even though, to achieve eradication, next-generation drugs active against both erythrocytic and exo-erythrocytic forms would be preferable. We applied a multifactorial approach to a set of >4000 commercially available compounds with previously demonstrated blood-stage(More)
Achieving the goal of malaria elimination will depend on targeting Plasmodium pathways essential across all life stages. Here we identify a lipid kinase, phosphatidylinositol-4-OH kinase (PI(4)K), as the target of imidazopyrazines, a new antimalarial compound class that inhibits the intracellular development of multiple Plasmodium species at each stage of(More)
The antiplasmodial activity of a series of spirotetrahydro beta-carbolines is described. Racemic spiroazepineindole (1) was identified from a phenotypic screen on wild type Plasmodium falciparum with an in vitro IC(50) of 90 nM. Structure-activity relationships for the optimization of 1 to compound 20a (IC(50) = 0.2 nM) including the identification of the(More)
Growing evidence suggests that the presence of a subpopulation of hypoxic non-replicating, phenotypically drug-tolerant mycobacteria is responsible for the prolonged duration of tuberculosis treatment. The discovery of new antitubercular agents active against this subpopulation may help in developing new strategies to shorten the time of tuberculosis(More)
Ribozymes are small, catalytic RNA molecules that can be engineered to down-regulate gene expression by cleaving specific mRNA. Here we report the selection of hairpin ribozymes that inhibit human immunodeficiency virus (HIV) replication from a combinatorial ribozyme library. We identified a total of 17 effective ribozymes, each capable of inhibiting HIV(More)
Aminopyrazoles are a new class of antimalarial compounds identified in a cellular antiparasitic screen with potent activity against Plasmodium falciparum asexual and sexual stage parasites. To investigate their unknown mechanism of action and thus identify their target, we cultured parasites in the presence of a representative member of the aminopyrazole(More)