Learn More
Asthma is a chronic inflammatory respiratory disease that affects over 300 million people worldwide. Glucocorticoids are a mainstay therapy for asthma because they exert anti-inflammatory effects in multiple lung tissues, including the airway smooth muscle (ASM). However, the mechanism by which glucocorticoids suppress inflammation in ASM remains poorly(More)
BACKGROUND Identifying genetic determinants for lung function is important in providing insight into the pathophysiology of asthma. Signal transducer and activator of transcription 3 is a transcription factor latent in the cytoplasm; the gene (STAT3) is activated by a wide range of cytokines, and may play a role in lung development and asthma pathogenesis.(More)
RATIONALE T-bet (TBX21 or T-box 21) is a critical regulator of T-helper 1 lineage commitment and IFN-gamma production. Knockout mice lacking T-bet develop airway hyperresponsiveness (AHR) to methacholine, peribronchial eosinophilic and lymphocytic inflammation, and increased type III collagen deposition below the bronchial epithelium basement membrane,(More)
Genetic variants altering cis-regulation of normal gene expression (cis-eQTLs) have been extensively mapped in human cells and tissues, but the extent by which controlled, environmental perturbation influences cis-eQTLs is unclear. We carried out large-scale induction experiments using primary human bone cells derived from unrelated donors of Swedish origin(More)
RATIONALE Interpatient variability in montelukast response may be related to variation in leukotriene pathway candidate genes. OBJECTIVE To determine associations between polymorphisms in leukotriene pathway candidate genes with outcomes in patients with asthma receiving montelukast for 6 mo who participated in a clinical trial. METHODS Polymorphisms(More)
BACKGROUND Little is known about the role of most asthma susceptibility genes during human lung development. Genetic determinants for normal lung development are not only important early in life, but also for later lung function. OBJECTIVE To investigate the role of expression patterns of well-defined asthma susceptibility genes during human and murine(More)
BACKGROUND Personalized health-care promises tailored health-care solutions to individual patients based on their genetic background and/or environmental exposure history. To date, disease prediction has been based on a few environmental factors and/or single nucleotide polymorphisms (SNPs), while complex diseases are usually affected by many genetic and(More)
A pro-asthmatic culture milieu and β2-agonist (isoproterenol) were previously shown to regulate the expression of select transcription factors (TFs) within human airway epithelial and smooth muscle cells. This study tests 1116 single-nucleotide polymorphisms (SNPs) across 98 of these TF genes for association with bronchodilator response (BDR) in asthma(More)
Bronchodilator response (BDR) is an important asthma phenotype that measures reversibility of airway obstruction by comparing lung function (i.e. FEV(1)) before and after the administration of a short-acting β(2)-agonist, the most common rescue medications used for the treatment of asthma. BDR also serves as a test of β(2)-agonist efficacy. BDR is a complex(More)
In asthma, the response to beta-agonists acting at beta2-adrenergic receptors (beta2AR) displays extensive interindividual variation. One effector for airway beta2AR, adenylyl cyclase type 9 (AC9), was considered a candidate locus for predicting beta-agonist efficacy in the absence and presence of corticosteroid treatment. One non-synonymous AC9(More)