Kejun Zhuang

Learn More
In this paper, a delayed SIS (Susceptible Infectious Susceptible) model with stage structure is investigated. We study the Hopf bifurcations and stability of the model. Applying the normal form theory and the center man-ifold argument, we derive the explicit formulas determining the properties of the bifurcating periodic solutions. The conditions to(More)
In this paper, a modified delayed mathematical model for the dynamics of HIV with cure rate is considered. By regarding the time delay as bifurcation parameter, stability and existence of local Hopf bifurcation are studied by analyzing the transcendental characteristic equation. Then the global existence of bifurcating periodic solutions is established with(More)
Viruses have important influences on human health: they not only cause some common diseases, but also cause serious illnesses. Moreover, the conventional medicines usually fail to prevent or treat them, and viral infections are hard to treat because viruses live inside the body's cells. However, some mathematical models can help to understand the viral(More)
The diffusive logistic growth model with time delay and feedback control is considered. First, the well-posedness and permanence of solutions are discussed by using some comparison techniques. Then, the sufficient conditions for stability of nonnegative constant steady states are established, and the occurrence of Hopf bifurcation at positive steady state(More)