Learn More
Formaldehyde is an aliphatic monoaldehyde and is a highly reactive environmental human carcinogen. Whereas humans are continuously exposed to exogenous formaldehyde, this reactive aldehyde is a naturally occurring biological compound that is present in human plasma at concentrations ranging from 13 to 97 micromol/L. It has been well documented that(More)
O6-Methylguanine-DNA methyltransferase (MGMT; DNA-O6-methylguanine:protein-L-cysteine S-methyltransferase, EC, a unique DNA repair protein present in most organisms, removes the carcinogenic and mutagenic adduct O6-alkylguanine from DNA by stoichiometrically accepting the alkyl group on a cysteine residue in a suicide reaction. The mammalian(More)
O6-methylguanine-DNA methyltransferase (MGMT) is a ubiquitous protein responsible for repair of O6-alkylguanine, a mutagenic, carcinogenic and toxic lesion. To characterize the elements responsible for the regulation of the MGMT gene, a 2.6 kb Sstl fragment isolated from a genomic clone, was shown to contain 5' flanking sequences of the gene. The promoter(More)
Base excision repair (BER) plays an essential role in protecting cells from mutagenic base damage caused by oxidative stress, hydrolysis, and environmental factors. POLQ is a DNA polymerase, which appears to be involved in translesion DNA synthesis (TLS) past base damage. We disrupted POLQ, and its homologs HEL308 and POLN in chicken DT40 cells, and also(More)
A change in chromosome number, known as aneuploidy, is a common characteristic of cancer. Aneuploidy disrupts gene expression in human cancer cells and immortalized human epithelial cells, but not in normal human cells. However, the relationship between aneuploidy and cancer remains unclear. To study the effects of aneuploidy in normal human cells, we(More)
Human tumor cell lines that do not express O6-methylguanine-DNA methyltransferase (MGMT) in detectable quantities (Mer-) are hypersensitive to the effects of O6-guanine-alkylating agents. Because the Mer- phenotype enhances tumor response to such agents, we investigated possible mechanisms involved in regulation of MGMT expression in a panel of Mer+ and(More)
Expression of the O6-methylguanine DNA methyltransferase (MGMT) gene in human glioma cell lines is strongly associated with resistance to the chemotherapeutic agent 1,3-bis(2-chloroethyl)-1-nitrosourea. To examine the possibility that methylation of the body and promoter regions of the MGMT gene is associated with MGMT expression in a graded, rather than a(More)
The inducibility of the mammalian O6-methylguanine-DNA methyltransferase (MGMT) gene encoding the MGMT protein (EC responsible for removal of the procarcinogenic and promutagenic lesion O6-alkylguanine from DNA was examined by an analysis of transcription of the MGMT gene following exposure of repair-competent (Mex+) and repair-deficient (Mex-)(More)
O6-methylguanine-DNA methyltransferase (MGMT), a ubiquitous DNA repair protein, removes the mutagenic DNA adduct O6-alkylguanine, which is synthesized both endogenously and after exposure to alkylnitrosamines and alkylating antitumor drugs such as 2-chloroethyl-N-nitrosourea (CNU). The MGMT gene is highly regulated in mammalian cells and its overexpression,(More)
Poly(ADP-ribose) polymerase-1 (PARP-1) is a base excision repair (BER) protein that binds to DNA single strand breaks (SSBs) and subsequently synthesizes and transfers poly(ADP-ribose) polymers to various nuclear proteins. Numerous biochemical studies have implicated PARP-1 as a modulator of BER; however, the role of PARP-1 in BER in living cells remains(More)