Keith P. Choe

Learn More
Cells adapt to stressors by activating mechanisms that repair damage and protect them from further injury. Stress-induced damage accumulates with age and contributes to age associated diseases. Increased age attenuates the ability to mount a stress response, but little is known about the mechanisms by which this occurs. To begin addressing this problem, we(More)
q rH q exchangers in the gills of a hagfish, Myxine glutinosa, an elasmobranch, Raja erinacea, and a teleost, Fundulus heteroclitus Abstract q q Ž. Na rH exchangers NHE are a family of ion exchangers with diverse functions that are well defined in mammals. NHE-1 is expressed in the plasma membrane of most mammalian cells where it regulates intracellular pH,(More)
High-throughput screening (HTS) is a powerful approach to drug discovery, but many lead compounds are found to be unsuitable for use in vivo after initial screening. Screening in small animals like C. elegans can help avoid these problems, but this system has been limited to screens with low-throughput or no specific molecular target. We report the first in(More)
SKN-1/Nrf transcription factors activate cytoprotective genes in response to reactive small molecules and strongly influence stress resistance, longevity, and development. The molecular mechanisms of SKN-1/Nrf regulation are poorly defined. We previously identified the WD40 repeat protein WDR-23 as a repressor of Caenorhabditis elegans SKN-1 that functions(More)
Ca(2+)-activated Cl(-) channels (CaCCs) are critical to processes such as epithelial transport, membrane excitability, and signal transduction. Anoctamin, or TMEM16, is a family of 10 mammalian transmembrane proteins, 2 of which were recently shown to function as CaCCs. The functions of other family members have not been firmly established, and almost(More)
The SKN-1/Nrf transcription factors are master regulators of oxidative stress responses and are emerging as important determinants of longevity. We previously identified a protein named WDR-23 as a direct repressor of SKN-1 in C. elegans. Loss of wdr-23 influences stress resistance, longevity, development, and reproduction, but it is unknown if WDR-23(More)
Background: Acute high dose exposure to teratogenic chemicals alters the proper development of an embryo leading to infertility, impaired fecundity, and few viable offspring. However, chronic exposure to sub-toxic doses of teratogens during early development may also have long-term impacts on egg quality and embryo viability. Methods: To test the hypothesis(More)
SKN-1/Nrf are the primary antioxidant/detoxification response transcription factors in animals and they promote health and longevity in many contexts. SKN-1/Nrf are activated by a remarkably broad-range of natural and synthetic compounds and physiological conditions. Defining the signaling mechanisms that regulate SKN-1/Nrf activation provides insights into(More)
In Caenorhabditis elegans, the transcription factor SKN-1 has emerged as a central coordinator of stress responses and longevity, increasing the need for genetic tools to study its regulation and function. However, current loss-of-function alleles cause fully penetrant maternal effect embryonic lethality, and must be maintained with genetic balancers that(More)