Learn More
We have discovered and analysed two novel, linear extrachromosomal double-stranded RNAs (dsRNAs) within oocysts of major north Amercian isolates of Cryptosporidium parvum, a parasitic protozoan that infects the gastrointestinal tract of a variety of mammals, including humans. These dsRNAs were found to reside within the cytoplasm of sporozoites, and were(More)
Ultraviolet (UV) light is being considered as a disinfectant by the water industry because it appears to be very effective for controlling potential waterborne pathogens, including Cryptosporidium parvum. However, many organisms have mechanisms such as nucleotide excision repair and photolyase enzymes for repairing UV-induced DNA damage and regaining(More)
This study demonstrates that polyamine biosynthesis in Cryptosporidium parvum occurs via a pathway chiefly found in plants and some bacteria. The lead enzyme of this pathway, arginine decarboxylase (ADC) was sensitive to the specific, irreversible inhibitor DL-alpha-difluoromethyl-arginine (IC50 30 microM), and intracellular growth of C. parvum was(More)
Biofilm formation is the primary virulence factor of Staphylococcus epidermidis. S. epidermidis biofilms preferentially form on abiotic surfaces and may contain multiple matrix components, including proteins such as accumulation-associated protein (Aap). Following proteolytic cleavage of the A domain, which has been shown to enhance binding to host cells, B(More)
An in-situ ELISA was used as a primary screen to test the effects of 101 antimicrobials and other agents on the development of Cryptosporidium parvum in vitro. Over 40 of the compounds displayed some form of anticryptosporidial activity, and dose-response curves were generated for 40 of these. The in-situ ELISA makes a highly effective primary,(More)
We report here the molecular analysis of a Type I fatty acid synthase in the apicomplexan Cryptosporidium parvum (CpFAS1). The CpFAS1 gene encodes a multifunctional polypeptide of 8243 amino acids that contains 21 enzymatic domains. This CpFAS1 structure is distinct from that of mammalian Type I FAS, which contains only seven enzymatic domains. The CpFAS1(More)
The purpose of this study was to determine whether antiorthostatic suspension of C3HeB/FeJ mice for a period of 11 days affected macrophage and spleen cell function. We found that antiorthostatic suspension did not alter macrophage secretion of prostaglandin E2, tumor necrosis factor alpha, and interleukin-1. Antiorthostatic suspension also did not affect(More)
The family Partitiviridae includes plant and fungal viruses with bisegmented dsRNA genomes and isometric virions in which the two genome segments are packaged separately and used as templates for semiconservative transcription by the viral polymerase. A new genus, Cryspovirus, has been approved for this family. Its name is based on that of the host genus,(More)
We report here on a quantitative real-time reverse transcription-PCR (qRT-PCR) assay for assessing drug efficacy against the intracellular pathogen Cryptosporidium parvum. The qRT-PCR assay detects 18S rRNA transcripts from both parasites, that is, the cycle threshold for 18S rRNA from parasites (C(T)([P18S])) and host cells (C(T)([H18S])), and evaluates(More)
We have identified three distinct cell phenotypes with respect to the conditions under which cells became susceptible to TNF-mediated lysis. These conditions include: 1) treatment with the protein synthesis inhibitor, cycloheximide; 2) contact with activated macrophages, and 3) infection with vaccinia virus. Whereas vaccinia virus-infected 3T3 cells became(More)