Keith M. Channon

Learn More
The most well-described example of an inherited speech and language disorder is that observed in the multigenerational KE family, caused by a heterozygous missense mutation in the FOXP2 gene. Affected individuals are characterized by deficits in the learning and production of complex orofacial motor sequences underlying fluent speech and display impaired(More)
BACKGROUND Increased superoxide production contributes to reduced vascular nitric oxide (NO) bioactivity and endothelial dysfunction in experimental models of diabetes. We characterized the sources and mechanisms underlying vascular superoxide production in human blood vessels from diabetic patients with coronary artery disease compared with nondiabetic(More)
Nitric oxide (NO), produced by endothelial nitric oxide synthase (eNOS), is a key signaling molecule in vascular homeostasis. Loss of NO bioavailability due to reduced synthesis and increased scavenging by reactive oxygen species is a cardinal feature of endothelial dysfunction in vascular disease states. The pteridine cofactor tetrahydrobiopterin (BH4) has(More)
In vascular disease states such as atherosclerosis and diabetes, endothelial nitric oxide (NO) bioactivity is reduced and oxidative stress is increased, resulting in endothelial dysfunction. Recent studies suggest that changes in the activity and regulation of endothelial NO synthase by its cofactor tetrahydrobiopterin (BH4) is an important contributor to(More)
BACKGROUND Changes in the myocardium in acute ischemia are dynamic and complex, and the characteristics of myocardial tissue on cardiovascular magnetic resonance in the acute setting are not fully defined. We investigated changes in edema and late gadolinium enhancement (LGE) with serial imaging early after acute myocardial infarction, relating these to(More)
Nitric oxide, generated by the nitric oxide synthase (NOS) enzymes, plays pivotal roles in cardiovascular homeostasis and in the pathogenesis of cardiovascular disease. The NOS cofactor, tetrahydrobiopterin (BH4), is an important regulator of NOS function, since BH4 is required to maintain enzymatic coupling of L-arginine oxidation, to produce NO. Loss or(More)
Superoxide anion plays important roles in vascular disease states. Increased superoxide production contributes to reduced nitric oxide (NO) bioactivity and endothelial dysfunction in experimental models of vascular disease. We measured superoxide production by NAD(P)H oxidase in human blood vessels and examined the relationships between NAD(P)H oxidase(More)
OBJECTIVE Microparticles of iron oxide (MPIO) distort magnetic field creating marked contrast effects far exceeding their physical size. We hypothesized that antibody-conjugated MPIO would enable magnetic resonance imaging (MRI) of endothelial cell adhesion molecules in mouse atherosclerosis. METHODS AND RESULTS MPIO (4.5 microm) were conjugated to(More)
Tetrahydrobiopterin (BH4) is a critical determinant of endothelial nitric-oxide synthase (eNOS) activity. In the absence of BH4, eNOS becomes "uncoupled" and generates superoxide rather than NO. However, the stoichiometry of intracellular BH4/eNOS interactions is not well defined, and it is unclear whether intracellular BH4 deficiency alone is sufficient to(More)
BACKGROUND Estrogen acutely activates endothelial nitric oxide synthase (eNOS). However, the identity of the receptors involved in this rapid response remains unclear. METHODS AND RESULTS We detected an estrogen receptor alpha (ERalpha) transcript in human endothelial cells that encodes a truncated 46-kDa ERalpha (Delta1a-hERalpha-46). A corresponding(More)