Learn More
BACKGROUND The American Heart Association has recommended tail-cuff blood pressure measurement for high-throughput experimental designs, including mutagenesis screens and genetic crosses. However, some tail-cuff methods show good agreement with radiotelemetry and others do not, indicating that each tail-cuff method requires independent validation. METHODS(More)
Quantitative trait locus (QTL) analysis is a powerful method for localizing disease genes, but identifying the causal gene remains difficult. Rodent models of disease facilitate QTL gene identification, and causal genes underlying rodent QTL are often associated with the corresponding human diseases. Recently developed bioinformatics methods, including(More)
We have isolated the entire coding sequence of human FRAT2 (frequently rearranged in advanced T-cell lymphomas-2). It exhibits appreciable amino acid identity to FRAT1 (77%) which was initially isolated as frequently being overexpressed in a murine leukemia virus insertion model in murine tumors. FRAT proteins are thought to play a role in Wnt signaling.(More)
Nephropathy is a major contributor to overall morbidity and mortality in diabetic patients. Early renal changes during diabetes include Na retention and renal hypertrophy. Tumor necrosis factor (TNF) is elevated during diabetes and is implicated in the pathogenesis of diabetic nephropathy. We tested the hypothesis that TNF contributes to Na retention and(More)
Evidence from inbred strains of mice indicates that a quarter or more of the mammalian genome consists of chromosome regions containing clusters of functionally related genes. The intense selection pressures during inbreeding favor the coinheritance of optimal sets of alleles among these genetically linked, functionally related genes, resulting in extensive(More)
Identifying genes underlying common forms of kidney disease in humans has proven difficult, expensive, and time consuming. Quantitative trait loci (QTL) for several complex traits are concordant among mice, rats, and humans, suggesting that genetic findings from these animal models are relevant to human disease. Therefore, we reviewed the literature on(More)
BACKGROUND/AIM Diabetic nephropathy contributes substantially to cardiovascular morbidity and mortality associated with diabetes. Urinary tumor necrosis factor (TNF) excretion is increased during diabetes and serves as an important mediator of pathological changes during the initial stages of diabetic nephropathy, including sodium retention and renal(More)
Hypertension is a leading cause of heart attack, stroke, and kidney failure and represents a serious medical issue worldwide. The genetic basis of hypertension is well-established, but few causal genes have been identified thus far. Non-invasive blood pressure measurements are a critical component of high-throughput genetic studies to identify genes(More)
Hypertension is a complex phenotype induced by multiple environmental and genetic factors. Quantitative trait locus (QTL) analysis is a powerful method for identifying genomic regions underlying complex diseases. We conducted a QTL analysis of blood pressure in mice using 217 F(2) progeny (males and females) from a cross between the normotensive C3H/HeJ and(More)
Chronic kidney disease (CKD) is a growing medical problem and a significant risk factor for the development of end-stage renal disease, cardiovascular disease, and cardiovascular mortality. The genetic basis of CKD is recognized, but knowledge of the specific genes that contribute to the onset and progression of kidney disease is limited, mainly because of(More)