Learn More
BACKGROUND Chemical toxicity testing is being transformed by advances in biology and computer modeling, concerns over animal use, and the thousands of environmental chemicals lacking toxicity data. The U.S. Environmental Protection Agency's ToxCast program aims to address these concerns by screening and prioritizing chemicals for potential human toxicity(More)
The U.S. Environmental Protection Agency (EPA) is developing methods for utilizing computational chemistry, high-throughput screening (HTS), and various toxicogenomic technologies to predict potential for toxicity and prioritize limited testing resources toward chemicals that likely represent the greatest hazard to human health and the environment. This(More)
The complexity of human biology has made prediction of health effects as a consequence of exposure to environmental chemicals especially challenging. Complex cell systems, such as the Biologically Multiplexed Activity Profiling (BioMAP) primary, human, cell-based disease models, leverage cellular regulatory networks to detect and distinguish chemicals with(More)
Many chemicals in commerce today have undergone limited or no safety testing. To reduce the number of untested chemicals and prioritize limited testing resources, several governmental programs are using high-throughput in vitro screens for assessing chemical effects across multiple cellular pathways. In this study, metabolic clearance and plasma protein(More)
Zebrafish (Danio rerio) is an emerging toxicity screening model for both human health and ecology. As part of the Computational Toxicology Research Program of the U.S. EPA, the toxicity of the 309 ToxCast™ Phase I chemicals was assessed using a zebrafish screen for developmental toxicity. All exposures were by immersion from 6-8 h post fertilization (hpf)(More)
Understanding the potential health risks posed by environmental chemicals is a significant challenge elevated by the large number of diverse chemicals with generally uncharacterized exposures, mechanisms, and toxicities. The present study is a performance evaluation and critical analysis of assay results for an array of 292 high-throughput cell-free assays(More)
OBJECTIVE Thousands of chemicals are in common use, but only a portion of them have undergone significant toxicologic evaluation, leading to the need to prioritize the remainder for targeted testing. To address this issue, the U.S. Environmental Protection Agency (EPA) and other organizations are developing chemical screening and prioritization programs. As(More)
The field of toxicology is on the cusp of a major transformation in how the safety and hazard of chemicals are evaluated for potential effects on human health and the environment. Brought on by the recognition of the limitations of the current paradigm in terms of cost, time, and throughput, combined with the ever increasing power of modern biological tools(More)
High-throughput in vitro toxicity screening can provide an efficient way to identify potential biological targets for chemicals. However, relying on nominal assay concentrations may misrepresent potential in vivo effects of these chemicals due to differences in bioavailability, clearance, and exposure. Hepatic metabolic clearance and plasma protein binding(More)
Addressing the safety aspects of drugs and environmental chemicals has historically been undertaken through animal testing. However, the quantity of chemicals in need of assessment and the challenges of species extrapolation require the development of alternative approaches. Our approach, the US Environmental Protection Agency's ToxCast program, utilizes a(More)