Learn More
The Landau-Lifshitz equation reliably describes magnetization dynamics using a phenomenological treatment of damping. This Letter presents first-principles calculations of the damping parameters for Fe, Co, and Ni that quantitatively agree with existing ferromagnetic resonance measurements. This agreement establishes the dominant damping mechanism for these(More)
The development of piezoelectric layered materials may be one of the key elements enabling expansion of nanotechnology, as they offer a solution for the construction of efficient transducers for a wide range of applications, including self-powered devices. Here, we investigate the piezoelectric effect in multilayer (ML) stepped MoS2 flakes obtained by(More)
The 2p(5)3d(1) excited state of the Ti(4+) ion in SrTiO(3) couples to e(g) distortions of the local oxygen cage, leading to a Jahn-Teller vibronic broadening of the excited states. We quantify this contribution to the broadening of the spectral features of the Ti L edge of SrTiO(3) by solving a model Hamiltonian, taking parameters for the Hamiltonian from(More)
This work focuses on the synthetic control of magnetic properties of mixed oxide magnetic nanoparticles of the general formula Fe(3-x)Co(x)O(4) (x < or = 0.33) in the protein cage ferritin. In this biomimetic approach, variations in the chemical synthesis result in the formation of single-phase Fe(3-x)Co(x)O(4) alloys or intimately mixed binary phase Fe/Co(More)
Core/shell nanowires (CSNWs) composed of Si, C, and SiC are promising systems for optoelectronic devices. Through computational investigations, we find that the band gaps (Eg) of these nanowires can be controlled not only by changing their composition, but also by adjusting the core/shell thickness ratio. For Si/SiC or SiC/C CSNWs with a fixed total number(More)
  • 1