Keith F. DeLuca

Learn More
Precise control of the attachment strength between kinetochores and spindle microtubules is essential to preserve genomic stability. Aurora B kinase has been implicated in regulating the stability of kinetochore-microtubule attachments but its relevant kinetochore targets in cells remain unclear. Here, we identify multiple serine residues within the(More)
Accurate chromosome segregation relies on dynamic interactions between microtubules (MTs) and the NDC80 complex, a major kinetochore MT-binding component. Phosphorylation at multiple residues of its Hec1 subunit may tune kinetochore-MT binding affinity for diverse mitotic functions, but molecular details of such phosphoregulation remain elusive. Using(More)
Although messenger RNA (mRNA) translation is a fundamental biological process, it has never been imaged in real time in vivo with single-molecule precision. To achieve this, we developed nascent chain tracking (NCT), a technique that uses multi-epitope tags and antibody-based fluorescent probes to quantify protein synthesis dynamics at the single-mRNA(More)
Aurora B kinase phosphorylates kinetochore proteins during early mitosis, increasing kinetochore–microtubule (MT) turnover and preventing premature stabilization of kinetochore–MT attachments. Phosphorylation of kinetochore proteins during late mitosis is low, promoting attachment stabilization, which is required for anaphase onset. The kinetochore protein(More)
Super-resolution imaging with photo-activatable or photo-switchable probes is a promising tool in biological applications to reveal previously unresolved intra-cellular details with visible light. This field benefits from developments in the areas of molecular probes, optical systems, and computational post-processing of the data. The joint design of optics(More)
Duplicated sister chromatids connect to the mitotic spindle through kinetochores, large proteinaceous structures built at sites of centromeric heterochromatin. Kinetochores are responsible for harnessing the forces generated by microtubule polymerization and depolymerization to power chromosome movements. The fidelity of chromosome segregation relies on(More)
Superresolved far-field microscopy has emerged as a powerful tool for investigating the structure of objects with resolution well below the diffraction limit of light. Nearly all superresolution imaging techniques reported to date rely on real energy states of fluorescent molecules to circumvent the diffraction limit, preventing superresolved imaging with(More)
Intracytoplasmic sperm injection (ICSI) is an established method to fertilise equine oocytes, but not all oocytes cleave after ICSI. The aims of the present study were to examine cytoskeleton patterns in oocytes after aging in vitro for 0, 24 or 48h (Experiment 1) and in potential zygotes that failed to cleave after ICSI of oocytes from donors of different(More)
  • 1