Learn More
Engineering robust microbes for the biotech industry typically requires high-level, genetically stable expression of heterologous genes and pathways. Although plasmids have been used for this task, fundamental issues concerning their genetic stability have not been adequately addressed. Here we describe chemically inducible chromosomal evolution (CIChE), a(More)
The yeast Saccharomyces cerevisiae is a widely used platform for the production of heterologous proteins of medical or industrial interest. However, heterologous protein productivity is often restricted due to the limitations of the host strain. In the protein secretory pathway, the protein trafficking between different organelles is catalyzed by the(More)
Taxol (paclitaxel) is a potent anticancer drug first isolated from the Taxus brevifolia Pacific yew tree. Currently, cost-efficient production of Taxol and its analogs remains limited. Here, we report a multivariate-modular approach to metabolic-pathway engineering that succeeded in increasing titers of taxadiene--the first committed Taxol(More)
Terpenoids represent a diverse class of molecules that provide a wealth of opportunities to address many human health and societal issues. The expansive array of structures and functionalities that have been evolved in nature provide an excellent pool of molecules for use in human therapeutics. While this class of molecules has members with therapeutic(More)
The yeast Saccharomyces cerevisiae is a widely used cell factory for the production of fuels and chemicals, and it is also provides a platform for the production of many heterologous proteins of medical or industrial interest. Therefore, many studies have focused on metabolic engineering S. cerevisiae to improve the recombinant protein production, and with(More)
A novel, quantitative method for detecting poly-3-hydroxybutyrate (PHB) amounts in viable cells was developed to allow for high-throughput screening of mutant libraries. The staining technique was demonstrated and optimized for the cyanobacterium Synechocystis sp. strain PCC6803 and the eubacterium Escherichia coli to maximize the fluorescence difference(More)
With a high demand for increasingly diverse chemicals, as well as sustainable synthesis for many existing chemicals, the chemical industry is increasingly looking to biosynthesis. The majority of biosynthesis examples of useful chemicals are either native metabolites made by an organism or the heterologous expression of known metabolic pathways into a more(More)
Metabolic engineering exploits an integrated, systems-level approach for optimizing a desired cellular property or phenotype; and great strides have been made within this scope and context during the past fifteen years. However, due to limitations in the concepts and techniques, these have relied on a focused, pathway-oriented view. Recent advances in(More)
The yeast Saccharomyces cerevisiae is a widely used model organism for studying cell biology, metabolism, cell cycle and signal transduction. Many regulatory pathways are conserved between this yeast and humans, and it is therefore possible to study pathways that are involved in disease development in a model organism that is easy to manipulate and that(More)
BACKGROUND Virus-like particles (VLP) have an increasing range of applications including vaccination, drug delivery, diagnostics, gene therapy and nanotechnology. These developments require large quantities of particles that need to be obtained in efficient and economic processes. Production of VLP in yeast is attractive, as it is a low-cost protein(More)