Keith C. Thompson

Learn More
PURPOSE Bisphosphonates are currently the most important class of antiresorptive agents used in the treatment of metabolic bone diseases, including tumor-associated osteolysis and hypercalcemia. These compounds have high affinity for calcium ions and therefore target bone mineral, where they are internalized by bone-resorbing osteoclasts and inhibit(More)
Nitrogen-containing bisphosphonates indirectly activate Vgamma9Vdelta2 T cells through inhibition of farnesyl pyrophosphate synthase and intracellular accumulation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), but the cells responsible for Vgamma9Vdelta2 T cell activation through IPP/DMAPP accumulation are unknown. Treatment of(More)
Bisphosphonates (BPs) target bone due to their high affinity for calcium ions. During osteoclastic resorption, these drugs are released from the acidified bone surface and taken up by osteoclasts, where they act by inhibiting the prenylation of small GTPases essential for osteoclast function. However, it remains unclear exactly how osteoclasts internalise(More)
Bisphosphonates (BPs) are widely used in the treatment of diseases associated with excessive osteoclast-mediated bone resorption, such as osteoporosis. Although several years ago the molecular target of the potent nitrogen-containing BPs (N-BPs) was identified as farnesyl diphosphate synthase, an enzyme in the mevalonate pathway, recent data have shed new(More)
After decades of successful clinical use, the exact molecular mechanisms by which the anti-resorptive bisphosphonate drugs (BPs) exert their effects are now being revealed. In addition to their anti-resorptive effects, it is now apparent that nitrogen-containing BPs (N-BPs) have immunomodulatory properties. Specifically, these drugs activate immune cells(More)
UNLABELLED The acute phase response is the major adverse effect of intravenously administered N-BPs. In this study we show that N-BPs cause gamma,delta-T-cell activation and proliferation in vitro by an indirect mechanism through inhibition of FPP synthase, an effect that can be overcome by inhibiting HMG-CoA reductase with a statin. These studies clarify(More)
Bisphosphonates such as alendronate and zoledronate are blockbuster drugs used to inhibit osteoclast-mediated bone resorption. Although the molecular mechanisms by which bisphosphonates affect osteoclasts are now evident, the exact route by which they are internalized by cells is not known. To clarify this, we synthesized a novel, fluorescently labeled(More)
Nitrogen-containing bisphosphonate drugs (N-BPs) are effective anti-resorptive agents commonly used for the treatment of postmenopausal osteoporosis and tumour-induced osteolysis. Intravenous administration of N-BPs is commonly associated with a flu-like acute-phase reaction involving the activation of Vc9Vd2 T cells (Kunzmann et al, 2000). As Vc9Vd2 T(More)
Three general classes of small, nonpeptide "antigens" activate Vgamma9Vdelta2 T cells: pyrophosphomonoesters, such as isopentenyl diphosphate (IPP), nitrogen-containing bisphosphonates (N-BPs), and alkylamines. However, we have shown recently that N-BPs indirectly activate Vgamma9Vdelta2 T cells as a consequence of inhibition of farnesyl diphosphate(More)
We and others have recently shown that the major molecular target of nitrogen-containing bisphosphonate drugs is farnesyl diphosphate synthase, an enzyme in the mevalonate pathway. In an in vitro screen, we discovered a bisphosphonate, NE21650, that potently inhibited farnesyl diphosphate synthase but, unlike other N-BPs investigated, was also a weak(More)