Learn More
The study of aerosol composition for air quality research involves the analysis of high-dimensional single particle mass spectrometry data. We describe, apply, and evaluate a novel interactive visual framework for dimensionality reduction of such data. Our framework is based on non-negative matrix factorization with specifically defined regularization terms(More)
Analysis of chemical constituents from mass spectrometry of aerosols involves non-negative matrix factorization, an approximation of high-dimensional data in lower-dimensional space. The associated optimization problem is non-convex, resulting in crude approximation errors that are not accessible to scientists. To address this shortcoming , we introduce a(More)
  • 1