Learn More
Controlling the organization of molecular building blocks at the nanometer level is of utmost importance, not only from the viewpoint of scientific curiosity, but also for the development of next-generation organic devices with electrical, optical, chemical, or biological functions. Self-assembly offers great potential for the manufacture of(More)
Halloysite is naturally available clay mineral with hollow cylindrical geometry and it is available in thousands of tons. Silver nanorods were synthesized inside the lumen of the halloysite by thermal decomposition of the silver acetate, which was loaded into halloysite from an aqueous solution by vacuum cycling. Images of individual ca. 15 nm diameter(More)
Linear π-gelators self-assemble into entangled fibers in which the molecules are arranged perpendicular to the fiber long axis. However, orientation of gelator molecules in a direction parallel to the long axes of the one-dimensional (1-D) structures remains challenging. Herein we demonstrate that, at the air-water interface, an(More)
In this article, we propose a novel methodology for the formation of monodisperse regularly sized disks of several nanometer thickness and with diameters of less than 100 nm using Langmuir monolayers as fabrication media. An amphiphilic triimide, tri-n-dodecylmellitic triimide (1), was spread as a monolayer at the air-water interface with a water-soluble(More)
Redox-active Langmuir-Blodgett (LB) films containing dihydrophytyl ferrocenoate (DFc) and beta-carotene (betaC) were fabricated by use of 6-O-dihydrophytylcellulose (DHPC) as a matrix. A mixture of DFc-DHPC formed a stable monolayer. Atomic force microscopy images revealed that the DFc molecules were dispersed uniformly throughout the surface in the ratio(More)
Molecular machines embedded in a Langmuir monolayer at the air-water interface can be operated by application of lateral pressure. As part of the challenge associated with versatile sensing of biologically important substances, we here demonstrate discrimination of nucleotides by applying a cholesterol-armed-triazacyclononane host molecule. This molecular(More)
Right-handedness derived from bisporphyrins attached to a cellotriose backbone at O-6 and O''-6 positions is revealed for the first time. This cellotriose is proposed as a model of alternatingly functionalized cellulosics, which have promising properties for applications in optoelectronics and molecular receptors owing to the chirality and rigid backbone(More)
In contrast to the success in artificial DNA- and peptide-based nanostructures, the ability of polysaccharides to self-assemble into one-, two-, and three-dimensional nanostructures are limited. Here, we describe a strategy for designing and fabricating nanorods using a regioselectively functionalized cellulose derivative at the air-water interface in a(More)
An effective approach for the dispersion of hydrophilic cellulose nanofiber (CNF) in hydrophobic high-density polyethylene (HDPE) is presented using adsorption of a diblock copolymer dispersant. The dispersant consists of both resin compatible poly(lauryl methacrylate) (PLMA) and cellulose interactive poly(2-hydroxyethyl methacrylate) blocks. The(More)
Methyl xylopyranoside containing three 4-(pyrene-1-yl)benzoyl groups (PyXy) undergoes conformational interchange within a Langmuir monolayer upon mechanical compression. This xylose-type molecular machine PyXy was immobilized within two different matrix lipids, methyl stearate and methyl 2,3,4-tri-O-stearoyl-β-D-xylopyranoside, which respectively form rigid(More)