Learn More
Accumbens dopamine (DA) depletions produce deficits that are related to the ratio requirement of the operant schedule; however, it is also possible that time without reinforcement is a factor. The present study examined the effects of accumbens DA depletions in rats using variable interval (VI) schedules with additional fixed ratio (FR) requirements. Four(More)
Adenosine A(2A) antagonists can exert antiparkinsonian effects in animal models. Recent experiments studied the ability of MSX-3 (an adenosine A(2A) antagonist) to reverse the locomotor suppression and tremor produced by dopamine antagonists in rats. MSX-3 reversed haloperidol-induced suppression of locomotion, and reduced the tremulous jaw movements(More)
It has been suggested that depletions of accumbens dopamine (DA) make rats more sensitive to work-related response costs. One way of controlling work costs in operant tasks has been to use fixed-ratio (FR) schedules with different ratio requirements. In addition to using ratio requirements to control response costs, investigators also can employ different(More)
Drug-induced tremulous jaw movements in rats have been used as a model of parkinsonian tremor. Because adenosine A2A antagonists have antiparkinsonian effects, the present experiments were conducted to study the ability of adenosine A2A antagonism to reverse the tremulous jaw movements produced by the antipsychotic drugs pimozide, haloperidol and reserpine.(More)
Drug-induced tremulous jaw movements (TJMs) in rats have been used as a model of parkinsonian tremor. Previous studies demonstrated that the typical antipsychotic haloperidol induced TJMs after acute or subchronic administration, while atypical antipsychotics did not. Moreover, it has been suggested that the relative potency for suppression of(More)
There is considerable evidence of interactions between adenosine A2A receptors and dopamine D2 receptors in striatal areas, and antagonists of the A2A receptor have been shown to reverse the motor effects of DA antagonists in animal models. The D2 antagonist haloperidol produces parkinsonism in humans, and also induces motor effects in rats, such as(More)
Tissue O₂ can be monitored using a variety of electrochemical techniques and electrodes. In vitro and in vivo characterisation studies for O₂ reduction at carbon paste electrodes (CPEs) using constant potential amperometry (CPA) are presented. Cyclic voltammetry indicated that an applied potential of -650 mV is required for O₂ reduction at CPEs. High(More)
Typical and atypical antipsychotics have been shown to alleviate N-methyl-D-aspartate (NMDA) receptor antagonist-induced BOLD signals in healthy humans and animals to differing degrees; factors that might relate to their different molecular mechanisms and clinical profiles. Recent studies have also extended these investigations to the analysis of resting(More)
Cannabinoid CB1 receptor antagonist/inverse agonists are becoming increasingly recognized for their potential therapeutic utility as appetite suppressants. In the current paper we characterize the biochemical and behavioral effects of AM 1387, which is a novel CB1 antagonist. AM 1387 exhibited binding affinity and selectivity for the CB1 over the CB2(More)
Substantia nigra pars reticulata (SNr) is a major output nucleus of the basal ganglia that receives GABAergic projections from neostriatum and globus pallidus. Previous research has shown that local pharmacological manipulations of GABA in SNr can influence tremulous jaw movements in rats. Tremulous jaw movements are defined as rapid vertical deflections of(More)