Keisuke Kaji

Learn More
Transgenic expression of just four defined transcription factors (c-Myc, Klf4, Oct4 and Sox2) is sufficient to reprogram somatic cells to a pluripotent state. The resulting induced pluripotent stem (iPS) cells resemble embryonic stem cells in their properties and potential to differentiate into a spectrum of adult cell types. Current reprogramming(More)
Reprogramming of somatic cells to pluripotency, thereby creating induced pluripotent stem (iPS) cells, promises to transform regenerative medicine. Most instances of direct reprogramming have been achieved by forced expression of defined factors using multiple viral vectors. However, such iPS cells contain a large number of viral vector integrations, any(More)
Cells of early mammalian embryos have the potential to develop into any adult cell type, and are thus said to be pluripotent. Pluripotency is lost during embryogenesis as cells commit to specific developmental pathways. Although restriction of developmental potential is often associated with repression of inappropriate genetic programmes, the role of(More)
The generation of induced pluripotent stem (iPS) cells presents a challenge to normal developmental processes. The low efficiency and heterogeneity of most methods have hindered understanding of the precise molecular mechanisms promoting, and roadblocks preventing, efficient reprogramming. Although several intermediate populations have been described, it(More)
The Nucleosome Remodeling and Deacetylase (NuRD) complex is essential for embryonic development and pluripotent stem cell differentiation. In this study, we investigated whether NuRD is also involved in the reverse biological process of induction of pluripotency in neural stem cells. By knocking out MBD3, an essential scaffold subunit of the NuRD complex,(More)
Mbd3 is a core component of the NuRD (Nucleosome Remodeling and Histone Deacetylation) co-repressor complex, and NuRD-mediated silencing has been implicated in cell fate decisions in a number of contexts. Mbd3-deficient embryonic stem (ES) cells made by gene targeting are viable but fail to form a stable NuRD complex, are severely compromised in the ability(More)
Sperm-oocyte fusion is one of the most impressive events in sexual reproduction, and the elucidation of its molecular mechanism has fascinated researchers for a long time. Because of the limitation of materials and difficulties in analyzing membrane protein-protein interactions, many attempts have failed to reach this goal. Recent studies involving gene(More)
Reprogramming of somatic cells to pluripotent cells promises to transform regenerative medicine. Recently many groups have achieved direct reprogramming of somatic cells by forced expression of defined factors using multiple viral vectors. However, such induced pluripotent stem (iPS) cells contain a number of viral vector integrations, any one of which(More)
CD9 is a membrane protein belonging to the tetraspanin family. Despite CD9's broad tissue distribution, the only abnormality observed in CD9-deficient mice was infertility of females, which was responsible for a defect in the sperm-egg fusion process. However, the function of CD9 in sperm-egg fusion is not clear at all because the technique to analyze the(More)
Oct4 is an essential regulator of pluripotency in vivo and in vitro in embryonic stem cells, as well as a key mediator of the reprogramming of somatic cells into induced pluripotent stem cells. It is not known whether activation and/or repression of specific genes by Oct4 is relevant to these functions. Here, we show that fusion proteins containing the(More)