Keisha C. McCall

Learn More
BACKGROUND PET-based texture features have been used to quantify tumor heterogeneity due to their predictive power in treatment outcome. We investigated the sensitivity of texture features to tumor motion by comparing static (3D) and respiratory-gated (4D) PET imaging. METHODS Twenty-six patients (34 lesions) received 3D and 4D [18F]FDG-PET scans before(More)
Topological crystalline insulators (TCIs) are a new class of topological materials that possess unique metallic surface states protected by crystalline mirror symmetry. Their topological surface properties are expected to strongly depend on the surface orientation. By combining density functional theory (DFT) calculations and synthesis experiments, we(More)
PURPOSE PET-based texture features are used to quantify tumor heterogeneity due to their predictive power in treatment outcome. We investigated the sensitivity of texture features to tumor motion by comparing whole body (3D) and respiratory-gated (4D) PET imaging. METHODS Twenty-six patients (34 lesions) received 3D and 4D [F-18]FDG-PET scans before(More)
An important challenge to using fluorodeoxyglucose-positron emission tomography (FDG-PET) in clinical trials of brain tumor patients is to identify malignant regions whose metabolic activity shows significant changes between pretreatment and a posttreatment scans in the presence of high normal brain background metabolism. This paper describes a(More)
Preclinical xenograft models have contributed to advancing our understanding of the molecular basis of prostate cancer and to the development of targeted therapy. However, traditional preclinical in vivo techniques using caliper measurements and survival analysis evaluate the macroscopic tumor behavior, whereas tissue sampling disrupts the microenvironment(More)
  • 1