Keirith A. Snyder

Learn More
In the arid and semiarid regions of North America, discrete precipitation pulses are important triggers for biological activity. The timing and magnitude of these pulses may differentially affect the activity of plants and microbes, combining to influence the C balance of desert ecosystems. Here, we evaluate how a “pulse” of water influences physiological(More)
Degree of hydration (DOH) and differential scanning calorimetry (DSC) measurements are used to characterize the effect of early exposure to a 90% relative humidity (RH) environment on cement paste hydration. Early exposure to a 90% RH environment can lead t9 the consumption of freezable water and altered microstructural development. The minimum duration of(More)
This article is citable (as shown above) and is released from embargo once it is posted to the Frontiers e-View site (www.frontiersinecology.org). Please note: This article was downloaded from Frontiers e-View, a service that publishes fully edited and formatted manuscripts before they appear in print in Frontiers in Ecology and the Environment. Readers are(More)
Plant species and functionally related species groups from arid and semi-arid habitats vary in their capacity to take up summer precipitation, acquire nitrogen quickly after summer precipitation, and subsequently respond with ecophysiological changes (e.g. water and nitrogen relations, gas exchange). For species that respond ecophysiologically, the use of(More)
Variation in the sources of water used by tree species has important ramifications for forest water balances. The fraction of tree transpiration water derived from the unsaturated soil zone and groundwater in a riparian forest was quantified for Populus fremontii, Salix gooddingii, and Prosopis velutina across a gradient of groundwater depth and streamflow(More)
Water movement from roots to soil at night in the process of hydraulic lift (redistribution) rehydrates the rhizosphere and has been proposed to improve plant nutrient acquisition. Another process that has now been found in many plant species is nighttime transpiration and this could also affect nutrient relations by influencing supply of mobile nutrients(More)
Cellulose delta18O and deltaD can provide insights on climates and hydrological cycling in the distant past and how these factors differ spatially. However, most studies of plant cellulose have used only one isotope, most commonly delta18O, resulting in difficulties partitioning variation in delta18O of precipitation vs. evaporative conditions that affect(More)
Previously, a hard core/soft shell computer model was developed to simulate the overlap and percolation of the interracial transition zones surrounding each aggregate in a mortar or concrete. The aggregate particles were modelled aa spheres with a size distribution representativeof a real mortar or concrete specimen. Here, the model has been extended to(More)
Diurnal fluctuations of leaf water isotope ratios (δ18O and δD) were measured for Jeffrey (Pinus jeffreyi Balf.) and lodgepole (Pinus contorta Douglas ex Louden) pine. Two trees per species were sampled every few hours on 15–16 October 2005 and 19–20 June 2006. Diurnal gas exchange was measured during the summer sampling. In fall 2005, leaf water δ18O(More)
Our goal was to evaluate effects of broad-scale changes in vegetation from grasslands to shrublands over the past 150 years on near-surface atmosphere over the Jornada Experimental Range in the northern Chihuahuan Desert, using a regional climate model. Simulations were conducted using 1858 and 1998 vegetation maps, and data collected in the field. Overall,(More)