Learn More
Cells undergoing endoreduplication replicate chromosomal DNA without intervening mitoses. The resulting larger, higher-ploidy nucleus is often associated with an increase in cell size, but the molecular basis for this correlation remains poorly understood. Recent advances in characterising various mutants and transgenic plants are beginning to unravel how(More)
The Spo11 protein is a eukaryotic homologue of the archaeal DNA topoisomerase VIA subunit (topo VIA). In archaea it is involved, together with its B subunit (topo VIB), in DNA replication. However, most eukaryotes, including yeasts, insects and vertebrates, instead have a single gene for Spo11/topo VIA and no homologues for topo VIB. In these organisms,(More)
Endoreduplication is a common process in eukaryotes that involves DNA amplification without corresponding cell divisions. Cell size in various organisms has been linked to endoreduplication, but the molecular mechanisms are poorly understood. We have used a genetic strategy to identify molecules involved in endocycles in Arabidopsis. We isolated two extreme(More)
Efforts to understand nuclear organization in plant cells have received little assistance from the better-studied animal nuclei, because plant proteomes do not contain recognizable counterparts to the key animal proteins involved in nuclear organization, such as lamin nuclear intermediate filament proteins. Previous studies identified a plant-specific(More)
How cells achieve their final sizes is a pervasive biological question. One strategy to increase cell size is for the cell to amplify its chromosomal DNA content through endoreduplication cycles. Although endoreduplication is widespread in eukaryotes, we know very little about its molecular mechanisms. Successful progression of the endoreduplication cycle(More)
The mechanical properties of plant organs depend upon anatomical structure, cell-cell adhesion, cell turgidity, and the mechanical properties of their cell walls. By testing the mechanical responses of Arabidopsis mutants, it is possible to deduce the contribution that polymers of the cell wall make to organ strength. We developed a method to measure the(More)
In dark-grown hypocotyls of the Arabidopsis procuste mutant, a mutation in the CesA6 gene encoding a cellulose synthase reduces cellulose synthesis and severely inhibits elongation growth. Previous studies had left it uncertain why growth was inhibited, because cellulose synthesis was affected before, not during, the main phase of elongation. We(More)
How plant organs grow to reach their final size is an important but largely unanswered question. Here, we describe an Arabidopsis thaliana mutant, brassinosteroid-insensitive4 (bin4), in which the growth of various organs is dramatically reduced. Small organ size in bin4 is primarily caused by reduced cell expansion associated with defects in increasing(More)
To understand how the direction of root growth changes in response to obstacles, light, and gravity, we characterized an Arabidopsis thaliana mutant, wavy growth 2 (wav2), whose roots show a short-pitch pattern of wavy growth on inclined agar medium. The roots of the wav2 mutant bent with larger curvature than those of the wild-type seedlings in wavy growth(More)
BACKGROUND DNA topoisomerases are enzymes that control the topology of DNA in all cells. DNA gyrase is unique among the topoisomerases in that it is the only enzyme that can actively supercoil DNA using the free energy of ATP hydrolysis. Until recently gyrase was thought to be unique to bacteria, but has now been discovered in plants. The genome of the(More)
  • 1