Learn More
BACKGROUND AND PURPOSE We have previously described effects of chronic cerebral hypoperfusion in mice with bilateral common carotid artery stenosis (BCAS) using microcoils for 30 days. These mice specifically exhibit working memory deficits attributable to frontal-subcortical circuit damage without apparent gray matter changes, indicating similarities with(More)
DJ-1 was initially identified as a novel oncogene and has recently been found to be a causative gene for a familial form of Parkinson's disease (PD), viz, PARK7. Cysteine residue at position 106 (Cys-106) in DJ-1 was found to be oxidized preferentially under oxidative stress. In the present study, we developed specific antibodies against Cys-106-oxidized(More)
OBJECTIVES Nickel oxide (NiO) is an important industrial material, and it is also a harmful agent. The toxicity of NiO is size-related: nanoparticles are more toxic than fine-particles. The toxic mechanism induced by NiO nanoparticles remains unexplained, and the relationship between in vitro and in vivo NiO toxicity results is unclear. In the present(More)
DJ-1, the causative gene of a familial form of Parkinson's disease (PD), has been reported undergo oxidation preferentially at the 106th cysteine residue (Cys-106) under oxidative stress. Recently, it has been found that the levels of oxidized DJ-1 in erythrocytes of unmedicated PD patients are markedly higher than those in medicated PD patients and healthy(More)
BACKGROUND AND PURPOSE Although subcortical vascular dementia, the major subtype of vascular dementia, is caused by a disruption in white matter integrity after cerebrovascular insufficiency, no therapy has been discovered that will restore cerebral perfusion or functional cerebral vessels. Because adrenomedullin (AM) has been shown to be angiogenic and(More)
Lipopolysaccharide (LPS) induces host inflammatory responses and tissue injury and has been implicated in the pathogenesis of various age-related diseases such as acute respiratory distress syndrome, vascular diseases, and periodontal disease. Antioxidants, particularly vitamin E, have been shown to suppress oxidative stress induced by LPS, but the previous(More)
There is increasing evidence to suggest that reactive oxygen species, including a variety of lipid oxidation products and other physiologically existing oxidative stimuli, can induce an adaptive response and enhance cell tolerance. In the present study, by using cultured cortical neurons, we investigated the effect of electrophilic lipids, such as(More)
  • 1