Learn More
BACKGROUND Heterophyllous aquatic plants show marked phenotypic plasticity. They adapt to environmental changes by producing different leaf types: submerged, floating and terrestrial leaves. By contrast, homophyllous plants produce only submerged leaves and grow entirely underwater. Heterophylly and submerged homophylly evolved under selective pressure(More)
Circumnutation, the helical movement of growing organ tips, is ubiquitous in land plants. The mechanisms underlying circumnutation have been debated since Darwin's time. Experiments in space and mutant analyses have revealed that internal oscillatory (tropism-independent) movement and gravitropic response are involved in circumnutation. Female flower buds(More)
The supply of phosphorus, the essential element for plant growth and development, is often limited in natural environments. Plants employ multiple physiological strategies to minimize the impact of phosphate deficiency. In deciduous trees, phosphorus is remobilized from senescing leaves in autumn and stored in other tissues for reuse in the following(More)
Heterophyllous aquatic plants produce aerial (i.e., floating and terrestrial) and submerged leaves—the latter lack stomata—while homophyllous plants contain only submerged leaves, and cannot survive on land. To identify whether differences in morphogenetic potential and/or physiological stress responses are responsible for variation in phenotypic plasticity(More)
  • 1