Learn More
In cultured rat hippocampal neurons, glutamate elevated the Ca(2+)-independent activity of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) through autophosphorylation when the neurons were incubated in Mg(2+)-free buffer, and this response was blocked by specific antagonists of the N-methyl-D-aspartate (NMDA) receptor. In addition, glutamate(More)
Among the molecular mechanisms that have been proposed to contribute to long-term potentiation in hippocampus are the activation and autophosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II). Here we report that high, but not low frequency stimulation applied to two groups of CA1 afferents resulted in a long lasting increase in the(More)
Leptin is well known to be involved in the control of feeding, reproduction and neuroendocrine functions through its action on the hypothalamus. However, leptin receptors are found in brain regions other than the hypothalamus (including the hippocampus and cerebral cortex) suggesting extrahypothalamic functions. We investigated hippocampal long-term(More)
Induction of long-term potentiation in the CA1 region of hippocampal slices is associated with increased activity of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) (Fukunaga, K., Stoppini, L., Miyamoto, E., and Muller, D. (1993) J. Biol. Chem. 268, 7863-7867). Here we report that application of high but not low frequency stimulation to two(More)
Using autophosphorylated Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) as substrate, we now find that long-term potentian (LTP) induction and maintenance are also associated with a significant decrease in calyculin A-sensitive protein phosphatase (protein phosphatase 2A) activity, without changes in Mg2+-dependent protein phosphatase (protein(More)
Leptin, an adipocytokine encoded by an obesity gene and expressed in adipose tissue, affects feeding behavior, thermogenesis, and neuroendocrine status via leptin receptors distributed in the brain, especially in the hypothalamus. Leptin may also modulate the synaptic plasticity and behavioral performance related to learning and memory since: leptin(More)
The importance of well characterized calcium/calmodulin-dependent protein kinase (CaMK) II in hippocampal long term potentiation (LTP) is widely well established; however, several CaMKs other than CaMKII are not yet clearly characterized and understood. Here we report the activation of CaMKIV, which is phosphorylated by CaMK kinase and localized(More)
Receptors coupled to the inhibitory G protein Gi, such as that for lysophosphatidic acid (LPA), have been shown to activate MAP kinase through a RAS-dependent pathway. However, LPA (but not insulin) has now been shown to activate MAP kinase in a RAS-independent manner in CHO cells that overexpress a dominant-negative mutant of the guanine nucleotide(More)
The bilateral olfactory bulbectomy (OBX) mouse exhibits neurodegeneration of cholinergic neurons in the medial septum with concomitant cognitive deficits. Consistent with our previous observations, choline acetyltransferase (ChAT) protein levels in the medial septum decreased by 43.5% 2 weeks after OBX without changes in glutamic acid decarboxylase-65(More)
NE-dlg/SAP102, a neuronal and endocrine tissue-specific membrane-associated guanylate kinase family protein, is known to bind to C-terminal ends of N-methyl-D-aspartate receptor 2B (NR2B) through its PDZ (PSD-95/Dlg/ZO-1) domains. NE-dlg/SAP102 and NR2B colocalize at synaptic sites in cultured rat hippocampal neurons, and their expressions increase in(More)