Keiji Sasaki

Learn More
Precision measurements are important across all fields of science. In particular, optical phase measurements can be used to measure distance, position, displacement, acceleration, and optical path length. Quantum entanglement enables higher precision than would otherwise be possible. We demonstrated an optical phase measurement with an entangled four-photon(More)
Arbitrary spatial distributions of the electric field of light are formed through the interference of individual wavenumber mode fields with appropriate amplitudes and phases, while the maximum wavenumber in the far field is limited by the wavelength of light. In contrast, localized surface plasmons (LSPs) possess the ability to confine photons strongly(More)
Localized surface plasmon resonance (LSPR) has been shown to exhibit a strong potential for nanoscale electromagnetic field manipulation beyond the diffraction limit. Particularly dark mode plasmons circumvent radiation loss and store the energy long in time, which raise the prospect of interesting plasmonics applications, for example biochemical sensing(More)
  • 1