Learn More
Precision measurements are important across all fields of science. In particular, optical phase measurements can be used to measure distance, position, displacement, acceleration, and optical path length. Quantum entanglement enables higher precision than would otherwise be possible. We demonstrated an optical phase measurement with an entangled four-photon(More)
We demonstrated that platinum (Pt) oxygen-reduction fuel-cell electrocatalysts can be stabilized against dissolution under potential cycling regimes (a continuing problem in vehicle applications) by modifying Pt nanoparticles with gold (Au) clusters. This behavior was observed under the oxidizing conditions of the O2 reduction reaction and potential cycling(More)
The ability to filter quantum states is a key capability in quantum information science and technology, in which one-qubit filters, or polarizers, have found wide application. Filtering on the basis of entanglement requires extension to multi-qubit filters with qubit-qubit interactions. We demonstrated an optical entanglement filter that passes a pair of(More)
Arbitrary spatial distributions of the electric field of light are formed through the interference of individual wavenumber mode fields with appropriate amplitudes and phases, while the maximum wavenumber in the far field is limited by the wavelength of light. In contrast, localized surface plasmons (LSPs) possess the ability to confine photons strongly(More)
Ethanol, with its high energy density, likely production from renewable sources and ease of storage and transportation, is almost the ideal combustible for fuel cells wherein its chemical energy can be converted directly into electrical energy. However, commercialization of direct ethanol fuel cells has been impeded by ethanol's slow, inefficient oxidation(More)
We report a scheme to exploit low radiative loss plasmonic resonance by combining a dark (subradiant) mode and a lattice resonance. We theoretically demonstrate that such dark-mode lattice resonances in periodic arrays of nanodisks or plasmonic crystals can be excited by vertically incident light beams. We investigate the excitation of lattice resonances in(More)
Localized surface plasmon resonance (LSPR) has been shown to exhibit a strong potential for nanoscale electromagnetic field manipulation beyond the diffraction limit. Particularly dark mode plasmons circumvent radiation loss and store the energy long in time, which raise the prospect of interesting plasmonics applications, for example biochemical sensing(More)
The purpose of this study is to examine the change in physical activity levels among children and adolescents living in the area affected by the 2011 earthquake and tsunami for 3 years immediately following the disaster. Children and adolescents graded four to nine and attending school in the Pacific coastal area of northern Japan were included in a total(More)