Learn More
Fc receptor-like A (FCRLA) and FCRLB have homology to the transmembrane FCRL family members (FCRL 1-6) and to the conventional receptors for the Fc portion of immunoglobulin, but uniquely are cytosolic proteins expressed in B cells. Here we describe the phenotype of Fcrlb-gene targeted mice. B cell development and in vitro responses are normal; however,(More)
Somatic hypermutation of Ig variable region genes is initiated by activation-induced cytidine deaminase; however, the activity of multiple DNA polymerases is required to ultimately introduce mutations. DNA polymerase eta (Poleta) has been implicated in mutations at A/T, but polymerases involved in C/G mutations have not been identified. We have generated(More)
A bioinformatics approach has lead to the identification of FcRY, a new Fc receptor related gene. FcRY is predicted to encode a protein with three immunoglobulin (Ig) domains followed by a mucin-like domain containing a proline-rich stalk and a C-terminal leucine rich region. The predicted protein lacks a hydrophobic domain for insertion into the plasma(More)
DNA polymerase theta (Poltheta) is a family A polymerase that contains an intrinsic helicase domain. To investigate the function of Poltheta in mammalian cells, we have inactivated its polymerase activity in CH12 mouse B lymphoma cells by targeted deletion of the polymerase core domain that contains the catalytic aspartic acid residue. Compared to parental(More)
Modulation of surface T cell antigen receptor (TCR) expression is an important mechanism for the regulation of immune responses and the prevention of T cell hyperactivation and autoimmunity. The TCR is rapidly internalized after antigen stimulation and then degraded in lysosomes. However, few of the molecules involved in this process have been identified.(More)
Somatic hypermutation of the Ig genes requires the activity of multiple DNA polymerases to ultimately introduce mutations at both A/T and C/G base pairs. Mice deficient for DNA polymerase eta (POLH) exhibited an approximately 80% reduction of the mutations at A/T, whereas absence of polymerase (POLQ) resulted in approximately 20% reduction of both A/T and(More)
Multiple DNA polymerases participate in somatic hypermutation of immunoglobulin (Ig) genes. Mutations at A/T are largely dependent on DNA polymerase eta (POLH) whereas mutations at C/G appear to be generated by several DNA polymerases. We have previously shown that mice expressing a catalytically inactive POLQ (Polq-inactive) have a reduction in C/G(More)
REV1 is a deoxycytidyl transferase that catalyzes the incorporation of deoxycytidines opposite deoxyguanines and abasic sites. To explore the role of its catalytic activity in Ig gene hypermutation in mammalian cells, we have generated mice expressing a catalytically inactive REV1 (REV1AA). REV1AA mice developed normally and were fertile on a pure C57BL/6(More)
DNA polymerase eta (POLH) is required for the generation of A:T mutations during the somatic hypermutation of Ig genes in germinal center B cells. It remains unclear, however, whether POLH is a limiting factor for A:T mutations and how the absence of POLH might affect antibody affinity maturation. We found that the heterozygous Polh+/- mice exhibited a(More)
  • 1