Learn More
Using basic thermodynamic principles we derive a Cahn–Hilliard–Darcy model for tumour growth including nutrient diffusion, chemotaxis, active transport, adhesion, apoptosis and proliferation. The model generalises earlier models and in particular includes active transport mechanisms which ensure thermodynamic consistency. We perform a formally matched(More)
We consider a diffuse interface model for tumour growth consisting of a Cahn– Hilliard equation with source terms coupled to a reaction-diffusion equation. The coupled system of partial differential equations models a tumour growing in the presence of a nutrient species and surrounded by healthy tissue. The model also takes into account transport mechanisms(More)
We consider a diffuse interface model for tumor growth consisting of a Cahn– Hilliard equation with source terms coupled to a reaction-diffusion equation, which models a tumor growing in the presence of a nutrient species and surrounded by healthy tissue. The well-posedness of the system equipped with Neumann boundary conditions was found to require regular(More)
We consider recurrent event data when the duration or gap times between successive event occurrences are of intrinsic interest. Subject heterogeneity not attributed to observed covariates is usually handled by random effects which result in an exchangeable correlation structure for the gap times of a subject. Recently, efforts have been put into relaxing(More)
We study the existence of weak solutions to a Cahn–Hilliard–Darcy system coupled with a convection-reaction-diffusion equation through the fluxes, through the source terms and in Darcy's law. The system of equations arises from a mixture model for tumour growth accounting for transport mechanisms such as chemotaxis and active transport. We prove, via a(More)
We derive a Cahn–Hilliard–Darcy model to describe multiphase tumour growth taking interactions with multiple chemical species into account as well as the simultaneous occurrence of proliferating, quiescent and necrotic regions. Via a coupling of the Cahn–Hilliard–Darcy equations to a system of reaction-diffusion equations a multitude of phenomena such as(More)
We study the existence of weak solutions to a mixture model for tumour growth that consists of a Cahn–Hilliard–Darcy system coupled with an elliptic reaction-diffusion equation. The Darcy law gives rise to an elliptic equation for the pressure that is coupled to the convective Cahn–Hilliard equation through convective and source terms. Both Dirichlet and(More)
We study a non-local variant of a diffuse interface model proposed by Hawkins– Darrud et al. (2012) for tumour growth in the presence of a chemical species acting as nutrient. The system consists of a Cahn–Hilliard equation coupled to a reaction-diffusion equation. For non-degenerate mobilities and smooth potentials, we derive well-posedness results, which(More)
  • 1