Kehui Xiang

Learn More
The 5'→3' exoribonucleases (XRNs) have important functions in transcription, RNA metabolism and RNA interference. The structure of Rat1 (also known as Xrn2) showed that the two highly conserved regions of XRNs form a single, large domain that defines the active site of the enzyme. Xrn1 has a 510-residue segment after the conserved regions that is required(More)
Symplekin (Pta1 in yeast) is a scaffold in the large protein complex that is required for 3'-end cleavage and polyadenylation of eukaryotic messenger RNA precursors (pre-mRNAs); it also participates in transcription initiation and termination by RNA polymerase II (Pol II). Symplekin mediates interactions between many different proteins in this machinery,(More)
Processing of mRNA precursors (pre-mRNAs) by polyadenylation is an essential step in gene expression. Polyadenylation consists of two steps, cleavage and poly(A) synthesis, and requires multiple cis elements in the pre-mRNA and a megadalton protein complex bearing the two essential enzymatic activities. While genetic and biochemical studies remain the major(More)
Ssu72, an RNA polymerase II C-terminal domain (CTD) phospho-Ser5 (pSer5) phosphatase, was recently reported to have pSer7 phosphatase activity as well. We report here the crystal structure of a ternary complex of the N-terminal domain of human symplekin, human Ssu72, and a 10-mer pSer7 CTD peptide. Surprisingly, the peptide is bound in the Ssu72 active site(More)
The C-terminal domain of the RNA polymerase II largest subunit (the Rpb1 CTD) is composed of tandem heptad repeats of the consensus sequence Y(1)S(2)P(3)T(4)S(5)P(6)S(7). We reported previously that Thr 4 is phosphorylated and functions in histone mRNA 3'-end formation in chicken DT40 cells. Here, we have extended our studies on Thr 4 and to other CTD(More)
The activity of RNA polymerase II (Pol II) is controlled in part by the phosphorylation state of the C-terminal domain (CTD) of its largest subunit. Recent reports have suggested that yeast regulator of transcription protein, Rtr1, and its human homologue RPAP2, possess Pol II CTD Ser5 phosphatase activity. Here we report the crystal structure of(More)
The Nipah and Hendra viruses are highly pathogenic paramyxoviruses that recently emerged from flying foxes to cause serious disease outbreaks in humans and livestock in Australia, Malaysia, Singapore and Bangladesh. Their unique genetic constitution, high virulence and wide host range set them apart from other paramyxoviruses. These characteristics have led(More)
Current in vitro assays for the activity of HIV-RT (reverse transcriptase) require radio-labeled or chemically modified nucleotides to detect reaction products. However, these assays are inherently end-point measurements and labor intensive. Here we describe a novel non-radioactive assay based on the principle of pyrosequencing coupled-enzyme system to(More)
  • 1