Learn More
As the feature size of FPGA shrinks to nanometers, soft errors increasingly become an important concern for SRAM-based FPGAs. Without consideration of the application level impact, existing reliability-oriented placement and routing approaches analyze soft error rate (SER) only at the physical level, consequently completing the design with suboptimal soft(More)
— As the feature size shrinks to the nanometer scale, SRAM-based FPGAs will become increasingly vulnerable to soft errors. Existing reliability-oriented placement and routing approaches primarily focus on reducing the fault occurrence probability (node error rate) of soft errors. However, our analysis shows that, besides the fault occurrence probability,(More)
It is challenging to manage the thermal behavior of many-core microprocessors while still keeping them running at high performance since the control complexity increases as the core number increases. In this article, a novel hierarchical dynamic thermal management method is proposed to overcome this challenge. The new method employs model predictive control(More)
As the feature size and threshold voltage reduce, leakage power dissipation becomes an important concern in SRAM-based FPGAs. This work focuses on reducing the leakage power in routing resources, and more specifically, the leakage power dissipated in the used part of FPGA device, which is known as the active leakage power. We observe that the leakage power(More)
  • 1