Learn More
Resistance of Lactococcus lactis to cytotoxic compounds shares features with the multidrug resistance phenotype of mammalian tumor cells. Here, we report the gene cloning and functional characterization in Escherichia coli of LmrA, a lactococcal structural and functional homolog of the human multidrug resistance P-glycoprotein MDR1. LmrA is a 590-aa(More)
All organisms have evolved strategies to regulate ion and pH homeostasis in response to developmental and environmental cues. One strategy is mediated by monovalent cation-proton antiporters (CPA) that are classified in two superfamilies. Many CPA1 genes from bacteria, fungi, metazoa, and plants have been functionally characterized; though roles of plant(More)
In this study we have identified the first plant K+/H+ exchanger, LeNHX2 from tomato (Lycopersicon esculentum Mill. cv. Moneymaker), which is a member of the intracellular NHX exchanger protein family. The LeNHX2 protein, belonging to a subfamily of plant NHX proteins closely related to the yeast NHX1 protein, is abundant in roots and stems and is induced(More)
In saline environments, plants accumulate Na(+) in vacuoles through the activity of tonoplast Na(+)/H(+) antiporters. The first gene for a putative plant vacuolar Na(+)/H(+) antiporter, AtNHX1, was isolated from Arabidopsis and shown to increase plant tolerance to NaCl. However, AtNHX1 mRNA was up-regulated by Na(+) or K(+) salts in plants and substituted(More)
In general, wild tomato species are more salt tolerant than cultivated species, a trait that is related to enhanced Na(+) accumulation in aerial parts in the wild species, but the molecular basis for these differences is not known. Plant NHX proteins have been suggested to be important for salt tolerance by promoting accumulation of Na(+) or K(+) inside(More)
We previously demonstrated that Saccharomyces cerevisiae vnx1Δ mutant strains displayed an almost total loss of Na(+) and K(+)/H(+) antiporter activity in a vacuole-enriched fraction. However, using different in vitro transport conditions, we were able to reveal additional K(+)/H(+) antiporter activity. By disrupting genes encoding transporters potentially(More)
KEA genes encode putative K(+) efflux antiporters that are predominantly found in algae and plants but are rare in metazoa; however, nothing is known about their functions in eukaryotic cells. Plant KEA proteins show homology to bacterial K(+) efflux (Kef) transporters, though two members in the Arabidopsis thaliana family, AtKEA1 and AtKEA2, have acquired(More)
Lactococcus lactis subsp. cremoris P8-2-47 contains an X-prolyl dipeptidyl aminopeptidase (X-PDAP; EC 3.4.14.5). A mixed-oligonucleotide probe prepared on the basis of the N-terminal amino acid sequence of the purified protein was made and used to screen a partial chromosomal DNA bank in Escherichia coli. A partial XbaI fragment cloned in pUC18 specified(More)
Although physiological and biochemical data since long suggested that Na(+)/H(+) and K(+)/H(+) antiporters are involved in intracellular ion and pH regulation in plants, it has taken a long time to identify genes encoding antiporters that could fulfil these roles. Genome sequencing projects have now shown that plants contain a very large number of putative(More)
The plasma membrane H+-ATPase is a proton pump belonging to the P-type ATPase superfamily and is important for nutrient acquisition in plants. The H+-ATPase is controlled by an autoinhibitory C-terminal regulatory domain and is activated by 14-3-3 proteins which bind to this part of the enzyme. Alanine-scanning mutagenesis through 87 consecutive amino acid(More)