Learn More
MR offers unique tools for measuring molecular diffusion. This review focuses on the use of diffusion-weighted MR spectroscopy (DW-MRS) to non-invasively quantitate the translational displacement of endogenous metabolites in intact mammalian tissues. Most of the metabolites that are observed by in vivo MRS are predominantly located in the intracellular(More)
The substituted glucopyranose ring structure 2-hydroxypropyl-beta-cyclodextrin (CDEX) increases the solubility of molecules by inclusion of the agent in the lipophilic interior of the ring. This property is of particular use for the administration of molecules by the intracerebral (ICV) or intrathecal (IT) routes. In concentrations up to 40% w/v (isotonic),(More)
Altered sensory sensitivity is generally linked to seizure-susceptibility in childhood epilepsy but may also be associated to the highly prevalent problems in behavioral adaptation. This association is further suggested by the frequent overlap of childhood epilepsy with autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD),(More)
AIMS/HYPOTHESIS It is increasingly evident that the brain is another site of diabetic end-organ damage. The pathogenesis has not been fully explained, but seems to involve an interplay between aberrant glucose metabolism and vascular changes. Vascular changes, such as deficits in cerebral blood flow, could compromise cerebral energy metabolism. We therefore(More)
Moyamoya vasculopathy (MMV) leads to chronic hypoperfusion predominantly in the middle cerebral artery (MCA) and anterior cerebral artery (ACA) territories. Most revascularization techniques focus on revascularization of the MCA territory. Augmentation of blood flow in the frontal area is important for neurocognition and lower extremity function. In this(More)
A frequency-selective multiple-quantum-coherence spectral editing pulse sequence, Ssel-MQC, was implemented for the detection of the betaH1-glucose resonance at 4.63 ppm in rat brain in vivo. Unwanted signal suppression and glucose coherence transfer pathway selection were performed with magnetic field gradients. To optimize sensitivity, the sequence was(More)
OBJECT Brain damage in patients with hydrocephalus is caused by mechanical forces and cerebral ischemia. The severity and localization of impaired cerebral blood flow and metabolism are still largely unknown. Magnetic resonance (MR) spectroscopy offers the opportunity to investigate cerebral energy metabolism and neuronal damage noninvasively and(More)
T2 and diffusion weighted MRI, as well as 31P and 1H MRS were performed in kaolin-induced hydrocephalic rats. Extracellular white matter edema was detected in the early stages of progressive hydrocephalus. Phosphocreatine (PCr)/inorganic phosphate (Pi) ratios in hydrocephalic animals were decreased compared to controls, and lactate was detected during the(More)
Ignoring diffusion anisotropy can severely hamper the quantitative determination of water and metabolite diffusion in complex tissues. The measurement of the trace of the diffusion tensor provides unambiguous and rotationally invariant ADC values, but usually requires three separate experiments. A single-shot technique developed earlier, originally designed(More)
The severity and progression of ventricular enlargement, the occurrence of cerebral edema, and the localization of ischemic metabolic changes were investigated in a rat model of hydrocephalus, using in vivo 1H MR spectroscopic imaging (SI) and diffusion weighted MRI (DW MRI). Hydrocephalic rats were studied 1, 2, 4, and 8 weeks after injection of kaolin(More)