Learn More
Apical membrane of polarized epithelial cells is generally isolated by physicochemical methods, that is, precipitation with polyethylene glycol (PEG) or MgCl(2) followed by differential centrifugation or sucrose density gradient centrifugation. However, these protocols are considerably sophisticated and frequently accompanied by impurities (e.g.,(More)
Hyperoxaluria is one of etiologic factors of calcium oxalate kidney stone disease. However, response of renal tubular cells to high-oxalate environment remained largely unknown. We applied a gel-based proteomics approach to characterize changes in cellular proteome of MDCK cells induced by 10mM sodium oxalate. A total of 14 proteins were detected as(More)
Adhesion of calcium oxalate monohydrate (COM) crystals onto apical surface of renal tubular epithelial cells is a crucial mechanism for crystal retention, leading to kidney stone formation. Various proteins on apical membrane may bind to COM crystals; however, these crystal-binding proteins remained unidentified. The present study therefore aimed to(More)
Hypercalciuria is associated with kidney stone formation and impaired renal function. However, responses of renal tubular cells upon exposure to high-calcium environment remain largely unknown. We thus performed a proteomic analysis of altered proteins in renal tubular cells induced by high-calcium and evaluated functional significance of these changes.(More)
UNLABELLED Incidence of kidney stone disease in males is 2- to 4-fold greater than in females. This study aimed to determine effects of testosterone on kidney stone disease using a proteomics approach. MDCK renal tubular cells were treated with or without 20nM testosterone for 7days. Cellular proteins were extracted, resolved by 2-DE, and stained with Deep(More)
Adhesion of calcium oxalate monohydrate (COM) crystals on renal tubular epithelial cells is a crucial step in kidney stone formation. Finding potential crystal receptors on the apical membrane of the cells may lead to a novel approach to prevent kidney stone disease. Our previous study identified a large number of crystal-binding proteins on the apical(More)
Urine pH has been thought to be an important factor that can modulate kidney stone formation. Nevertheless, there was no systematic evaluation of such pH effect. Our present study thus addressed effects of differential urine pH (4.0-8.0) on calcium oxalate (CaOx) crystallization, crystal-cell adhesion, crystal internalization into renal tubular cells, and(More)
Escherichia coli is the most common bacterium isolated from urine and stone matrix of calcium oxalate (CaOx) stone formers. Whether it has pathogenic role(s) in kidney stone formation or is only entrapped inside the stone remains unclear. We thus evaluated differences between E. coli isolated from urine of patients with kidney stone (EUK) and that from(More)
A previous study reported that lamin A/C (LMNA) expression was increased in renal tubular cells adhered with calcium oxalate monohydrate (COM) crystals; however, its functional significance in kidney stone disease remained unknown. In the present study, increased levels of LMNA and its partner, nesprin-1 (SYNE1), in Madin-Darby canine kidney cells upon COM(More)
Because underlying mechanisms of diabetic nephropathy/tubulopathy remained poorly understood, we aimed to define a key protein involving in hyperglycemia-induced renal tubular dysfunction. All altered renal proteins identified from previous large-scale proteome studies were subjected to global protein network analysis, which revealed heat shock protein 60(More)