Keara A. Franklin

Learn More
Exposure of Arabidopsis plants to high temperature (28 degrees C) results in a dramatic change in plant development. Responses to high temperature include rapid extension of plant axes, leaf hyponasty, and early flowering. These phenotypes parallel plant responses to the threat of vegetational shade and have been shown to involve the hormone auxin. In this(More)
At high ambient temperature, plants display dramatic stem elongation in an adaptive response to heat. This response is mediated by elevated levels of the phytohormone auxin and requires auxin biosynthesis, signaling, and transport pathways. The mechanisms by which higher temperature results in greater auxin accumulation are unknown, however. A basic(More)
The phytochromes are a family of plant photoreceptor proteins that control several adaptive developmental strategies. For example, the phytochromes perceive far-red light (wavelengths between 700 and 800 nm) reflected or scattered from the leaves of nearby vegetation. This provides an early warning of potential shading, and triggers a series of(More)
Light signals are fundamental to the growth and development of plants. Red and far-red light are sensed using the phytochrome family of plant photoreceptors. Individual phytochromes display both unique and overlapping roles throughout the life cycle of plants, regulating a range of developmental processes from seed germination to the timing of reproductive(More)
BACKGROUND AND AIMS The ability to detect and respond to the impending threat of shade can confer significant selective advantage to plants growing in natural communities. This Botanical Briefing highlights (a) the regulation of shade-avoidance responses by endogenous and exogenous factors and (b) current understanding of the molecular components involved(More)
To acquire freezing tolerance, higher plants require a period of low temperature (usually <4 degrees C) termed cold acclimation. Upon transfer of plants to low temperature, increased expression of the CRT/DRE binding factor (CBF) family of transcriptional activators leads to the upregulation of genes containing a C-repeat/drought-responsive (CRT/DRE)(More)
Stomata are pores on the surfaces of leaves that regulate gas exchange between the plant interior and the atmosphere [1]. Plants adapt to changing environmental conditions in the short term by adjusting the aperture of the stomatal pores, whereas longer-term changes are accomplished by altering the proportion of stomata that develop on the leaf surface [2,(More)
Controlled oxidation reactions catalyzed by the large, proton-pumping complexes of the respiratory chain generate an electrochemical gradient across the mitochondrial inner membrane that is harnessed for ATP production. However, several alternative respiratory pathways in plants allow the maintenance of substrate oxidation while minimizing the production of(More)
Phytochrome-mediated perception of the ratio of red to far-red wavelengths in the ambient light environment is fundamental to plant growth and development. Such monitoring enables plants to detect neighboring vegetation and initiate avoidance responses, thus conferring considerable selective advantage. The shade avoidance syndrome in plants is characterized(More)
The threat to plant survival presented by light limitation has driven the evolution of highly plastic adaptive strategies to either tolerate or avoid shading by neighbouring vegetation. When subject to vegetational shading, plants are exposed to a variety of informational signals, which include altered light quality and a reduction in light quantity. The(More)