Learn More
This paper introduces a web image search reranking approach that explores multiple modalities in a graph-based learning scheme. Different from the conventional methods that usually adopt a single modality or integrate multiple modalities into a long feature vector, our approach can effectively integrate the learning of relevance scores, weights of(More)
—Weakly-supervised image segmentation is a challenging problem with multidisciplinary applications in multimedia content analysis and beyond. It aims to segment an image by lever-aging its image-level semantics (i.e., tags). This paper presents a weakly-supervised image segmentation algorithm that learns the distribution of spatially structural superpixel(More)
Medical images often consist of low-contrast objects corrupted by random noise arising in the image acquisition process. Thus, image denoising is one of the fundamental tasks required by medical imaging analysis. Nonlocal means (NL-means) method provides a powerful framework for denoising. In this work, we investigate an adaptive denoising scheme based on(More)
Extracting discriminative and robust features from video sequences is the first and most critical step in human action recognition. In this paper, instead of using handcrafted features, we automatically learn spatio-temporal motion features for action recognition. This is achieved via an evolutionary method, i.e., genetic programming (GP), which evolves the(More)
In view-based 3D object retrieval and recognition, each object is described by multiple views. A central problem is how to estimate the distance between two objects. Most conventional methods integrate the distances of view pairs across two objects as an estimation of their distance. In this paper, we propose a discriminative probabilistic object modeling(More)
Binary hashing has been widely used for efficient similarity search due to its query and storage efficiency. In most existing binary hashing methods, the high-dimensional data are embedded into Hamming space and the distance or similarity of two points are approximated by the Hamming distance between their binary codes. The Hamming distance calculation is(More)