Learn More
A modified hierarchical mixtures of experts (HME) architecture is presented for text-dependent speaker identification. A new gating network is introduced to the original HME architecture for the use of instantaneous and transitional spectral information in text-dependent speaker identification. The statistical model underlying the proposed architecture is(More)
In practical applications of pattern recognition, there are often different features extracted from raw data which needs recognizing. Methods of combining multiple classifiers with different features are viewed as a general problem in various application areas of pattern recognition. In this paper, a systematic investigation has been made and possible(More)
In this paper, we extend the Hierarchical Mixture of Experts (HME) to temporal processing and explore it for a substantial problem, that of text-dependent speaker identification. For a specific multiway classification, we propose a generalized Bernoulli density instead of the multinomial logit density to avoid the instability during training. Time-delay(More)
In this paper, we explore the Input/Output HMM (IOHMM) architecture for a substantial problem, that of text-dependent speaker identification. For subnetworks modeled with generalized linear models, we extend the IRLS algorithm to the M-step of the corresponding EM algorithm. Experimental results show that the improved EM algorithm yields significantly(More)
We propose a dynamically coupled neural oscillator network for image segmentation. Instead of pair-wise coupling, an ensemble of oscillators coupled in a local region is used for grouping. We introduce a set of neighborhoods to generate dynamical coupling structures associated with a specific oscillator. Based on the proximity and similarity principles, two(More)
A novel method is proposed for combining multiple probabilistic classifiers on different feature sets. In order to achieve the improved classification performance, a generalized finite mixture model is proposed as a linear combination scheme and implemented based on radial basis function networks. In the linear combination scheme, soft competition on(More)
A novel connectionist method is proposed to simultaneously use diverse features in an optimal way for pattern classification. Unlike methods of combining multiple classifiers, a modular neural network architecture is proposed through use of soft competition among diverse features. Parameter estimation in the proposed architecture is treated as a maximum Ž.(More)